1. 背景介绍
1.1. AI模型规模与应用瓶颈
近年来,深度学习技术的飞速发展催生了越来越复杂的模型,这些模型在各种任务中取得了显著成果。然而,随着模型规模的不断增大,随之而来的问题也日益突出:
- 计算资源消耗巨大: 大型模型需要大量的计算资源进行训练和推理,这对于资源受限的设备来说是一个巨大的挑战。
- 存储空间需求高: 大型模型的参数量巨大,需要大量的存储空间,这对于移动设备和嵌入式系统来说是不可接受的。
- 推理速度缓慢: 大型模型的推理速度较慢,这限制了其在实时应用中的使用。
1.2. 模型压缩的重要性
为了解决这些问题,模型压缩技术应运而生。模型压缩旨在在保持模型性能的前提下,降低模型的规模和复杂度,从而减少计算资源消耗、存储空间需求和推理时间。
1.3. 模型压缩的意义
模型压缩技术具有重要的意义:
- 促进AI模型在资源受限设备上的部署: 通过压缩模型,可以将AI模型部署到移动设备、嵌入式系统等资源受限的设备上,从而扩展AI技术的应用范围。
- 提高AI模型的推理速度