Actor-Critic Methods原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
在深度学习领域,强化学习(Reinforcement Learning,RL)因其能够自动从环境中学习并作出决策的特性,受到了广泛关注。强化学习的基本思想是通过与环境的交互,不断优化策略,以实现长期奖励最大化。然而,传统的Q-learning和Sarsa等值函数方法在实际应用中存在一些局限性,例如值函数逼近困难、收敛速度慢、高维状态空间问题等。
为了解决这些问题,研究者们提出了Actor-Critic方法。Actor-Critic方法将策略学习和值函数学习相结合,通过两个神经网络分别学习策略和行为值,从而实现了更加高效和稳定的强化学习。
1.2 研究现状
Actor-Critic方法自提出以来,得到了广泛的关注和研究。近年来,随着深度学习技术的快速发展,Actor-Critic方法在多个领域取得了显著的成果,如机器人控制、自动驾驶、游戏AI等。目前,Actor-Critic方法已经成为强化学习领域的主流方法之一。
1.3 研究意义
Actor-Critic方法能够有效解决传统强化学习方法中的诸多问题,具有以下研究意义:
- 提高强化学习算法的收敛速度和稳定性。
- 降低对高维状态空间和复杂

订阅专栏 解锁全文
103

被折叠的 条评论
为什么被折叠?



