1. 背景介绍
1.1 大模型时代的数据需求
近年来,随着深度学习技术的飞速发展,大模型(Foundation Models)凭借其强大的表征学习能力在自然语言处理、计算机视觉等领域取得了显著成果。然而,大模型的训练需要海量高质量的标注数据,这成为了制约其发展的重要瓶颈。
1.2 数据图像获取与标签的重要性
数据图像的获取和标签是构建高质量数据集的关键环节。高质量的数据集不仅可以提升模型的性能,还能增强模型的泛化能力和鲁棒性。
1.3 本文目的
本文旨在深入探讨大模型开发与微调过程中数据图像的获取与标签问题,为读者提供从零开始构建大模型数据集的实用指南。
2. 核心概念与联系
2.1 数据集类型
- 图像分类数据集: 用于训练模型识别不同类别图像,例如ImageNet、CIFAR-10。
- 目标检测数据集: 用于训练模型识别图像中的特定目标及其位置,例如COCO、Pascal VOC。
- 图像分割数据集: 用于训练模型将图像分割成不同的语义区域,例如Cityscapes、ADE20K。