前言
求弦长问题,常见于直线和圆,直线和椭圆,直线和双曲线,直线和抛物线相交所形成的弦的长度问题。
弦长公式
- 直角坐标系下,针对直线和曲线的普通方程, ∣ A B ∣ = 1 + k 2 ⋅ ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}\cdot |x_1-x_2| ∣AB∣=1+k2⋅∣x1−x2∣,推导过程1
-
直角坐标系下,针对直线的参数方程和曲线的普通方程, ∣ A B ∣ = ∣ t 1 − t 2 ∣ |AB|=|\;t_1-t_2 \;| ∣AB∣=∣t1−t2∣,
-
极坐标系下,针对点 O O O, A A A, B B B三点共线的情形, ∣ A B ∣ = ∣ ρ A − ρ B ∣ |AB|=|\;\large{\rho}_{\tiny{A}}-\large{\rho}_{\tiny{B}}\;| ∣AB∣=∣ρA−ρB∣
直线和圆
- 求直线和圆的弦长常用方法;其中以几何方法最为简单。
①几何方法;利用弦心距、半弦长、半径所形成的 R t Δ Rt\Delta RtΔ求解,还用到点到直线的距离公式。弦长 = 2 R 2 − d 2 =2\sqrt{R^2-d^2} =2R2−d2;
②弦长公式; ∣ A B ∣ = 1 + k 2 ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}|x_1-x_2| ∣AB∣=1+k2∣x1−x2∣,运算量稍大一些;
③直线的参数方程法; ∣ A B ∣ = ∣ t 1 − t 2 ∣ |AB|=|t_1-t_2| ∣AB∣=∣t1−t2∣,此时需要注意直线的参数方程必须是标准形式,这种方法不太好理解。
【2019届凤中高三理科月考1第22题】在平面直角坐标系 x o y xoy xoy中,直线 l l l的参数方程为 { x = 2 + t y = 1 + 2 t \left\{\begin{array}{l}{x=2+t}\\{y=1+2t}\end{array}\right. {x=2+ty=1+2t( t t t为参数),以原点为极点,以 x x x轴的非负半轴为极轴建立极坐标系, ⊙ C \odot C ⊙C的极坐标方程为 ρ 2 \rho^2 ρ2 − 4 ρ ⋅ sin θ − 12 = 0 -4\rho\cdot\sin\theta-12=0 −4ρ⋅sinθ−12=0,
(1)、 求 ⊙ C \odot C ⊙C的参数方程;
分析:将 ρ 2 = x 2 + y 2 \rho^2=x^2+y^2 ρ2=x2+y2, y = ρ ⋅ s i n θ y=\rho\cdot sin\theta y=ρ⋅sinθ,代入 ⊙ C \odot C ⊙C的极坐标方程 ρ 2 − 4 ρ s i n θ − 12 = 0 \rho^2-4\rho sin\theta-12=0 ρ2−4ρsinθ−12=0,
得到 ⊙ C \odot C ⊙C的直角坐标方程为 x 2 + y 2 − 4 y − 12 = 0 x^2+y^2-4y-12=0 x2+y2−4y−12=0,即 x 2 + ( y − 2 ) 2 = 16 = 4 2 x^2+(y-2)^2=16=4^2 x2+(y−2)2=16=42,
故 ⊙ C \odot C ⊙C的参数方程为 { x = 4 c o s θ y = 2 + 4 s i n θ \left\{\begin{array}{l}{x=4cos\theta}\\{y=2+4sin\theta}\end{array}\right. {x=4cosθy=2+4sinθ ( θ \theta θ为参数, θ ∈ [ 0 , 2 π ) \theta\in [0,2\pi) θ∈[0,2π))。
(2)、求直线 l l l被 ⊙ C \odot C ⊙C截得的弦长。
【法1】几何方法,利用 R t Δ Rt\Delta RtΔ求解,将直线 l l l的参数方程消参,得到其普通方程为 2 x − y − 3 = 0 2x-y-3=0 2x−y−3=0,
则圆心 ( 0 , 2 ) (0,2) (0,2)到直线的距离为 d = ∣ − 2 − 3 ∣ 2 2 + 1 2 = 5 d=\cfrac{|-2-3|}{\sqrt{2^2+1^2}}=\sqrt{5} d=22+12∣−2−3∣=5,
则直线 l l l被 ⊙ C \odot C ⊙C截得的弦长为 2 r 2 − d 2 = 2 4 2 − ( 5 ) 2 = 2 11 2\sqrt{r^2-d^2}=2\sqrt{4^2-(\sqrt{5})^2}=2\sqrt{11} 2r2−d2=242−(5)2=211。
【法2】弦长公式,设直线和圆的交点为 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) A(x_1,y_1),B(x_2,y_2) A(x1,y1),B(x2,y2),
联立得到方程组, { 2 x − y − 3 = 0 x 2 + y 2 − 4 y − 12 = 0 \left\{\begin{array}{l}{2x-y-3=0}\\{x^2+y^2-4y-12=0}\end{array}\right. {2x−y−3=0x2+y2−4y−12=0
消去 y y y得到, x 2 + ( 2 x − 3 ) 2 − 4 ( 2 x − 3 ) − 12 = 0 x^2+(2x-3)^2-4(2x-3)-12=0 x2+(2x−3)2−4(2x−3)−12=0,整理得到, 5 x 2 − 20 x + 9 = 0 5x^2-20x+9=0 5x2−20x+9=0,
由韦达定理得到, x 1 + x 2 = 4 x_1+x_2=4 x1+x2=4, x 1 x 2 = 9 5 x_1x_2=\cfrac{9}{5} x1x2=59,
由弦长公式得到, ∣ A B ∣ = 1 + k 2 ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}|x_1-x_2| ∣AB∣=1+k2∣x1−x2∣ = 1 + 2 2 ( x 1 + x 2 ) 2 − 4 x 1 x 2 =\sqrt{1+2^2}\sqrt{(x_1+x_2)^2-4x_1x_2} =1+22(x1+x2)2−4x1x2
= 5 16 − 36 5 = 2 11 =\sqrt{5}\sqrt{16-\cfrac{36}{5}}=2\sqrt{11} =516−536=211。
【法3】利用直线的参数方程求解,需要先判断参数方程是否为标准形式;若不是,还需要转化为标准形式。
直线 l l l的参数方程为 { x = 2 + t y = 1 + 2 t ( t 为参数 ) \left\{\begin{array}{l}{x=2+t}\\{y=1+2t}\end{array}\right.(t为参数) {x=2+ty=1+2t(t为参数),
(此时千万要注意,弦长 ∣ A B ∣ ≠ ∣ t 1 − t 2 ∣ |AB|\neq |t_1-t_2| ∣AB∣=∣t1−t2∣,原因是这个参数方程不是标准形式的)
将其做如下的转化,
{ x = 2 + 1 5 ⋅ 5 t y = 1 + 2 5 ⋅ 5 t ( t 为参数 ) \left\{\begin{array}{l}{x=2+\cfrac{1}{\sqrt{5}}\cdot \sqrt{5}t}\\{y=1+\cfrac{2}{\sqrt{5}}\cdot \sqrt{5}t}\end{array}\right.(t为参数) ⎩ ⎨ ⎧x=2+51⋅5ty=1+52⋅5t(t为参数),
令 5 t = m \sqrt{5}t=m 5t=m,则其参数方程的标准形式为
{ x = 2 + 1 5 ⋅ m y = 1 + 2 5 ⋅ m ( m 为参数 ) \left\{\begin{array}{l}{x=2+\cfrac{1}{\sqrt{5}}\cdot m}\\{y=1+\cfrac{2}{\sqrt{5}}\cdot m}\end{array}\right.(m为参数) ⎩ ⎨ ⎧x=2+51⋅my=1+52⋅m(m为参数),
[此时参数 m m m的几何意义才是动点到定点的距离的数量,千万要注意,即弦长 ∣ A B ∣ = ∣ m 1 − m 2 ∣ = 1 2 + 2 2 ∣ t 1 − t 2 ∣ |AB|=|m_1-m_2|=\sqrt{1^2+2^2}|t_1-t_2| ∣AB∣=∣m1−m2∣=12+22∣t1−t2∣]
将直线 l l l的参数方程的标准形式代入圆的普通方程得到,
( 2 + 1 5 m ) 2 + ( 1 + 2 5 m ) 2 − 4 ( 1 + 2 5 m ) − 12 = 0 (2+\cfrac{1}{\sqrt{5}}m)^2+(1+\cfrac{2}{\sqrt{5}}m)^2-4(1+\cfrac{2}{\sqrt{5}}m)-12=0 (2+51m)2+(1+52m)2−4(1+52m)−12=0
整理为 m 2 − 11 = 0 m^2-11=0 m2−11=0,令直线和圆的两个交点 A , B A,B A,B分别对应的参数为 m 1 , m 2 m_1,m_2 m1,m2,
则 m 1 + m 2 = 0 m_1+m_2=0 m1+m2=0, m 1 m 2 = − 11 m_1m_2=-11 m1m2=−11,
此时弦长 ∣ A B ∣ = ∣ m 1 − m 2 ∣ = ( m 1 + m 2 ) 2 − 4 m 1 m 2 = 4 × 11 = 2 11 |AB|=|m_1-m_2|=\sqrt{(m_1+m_2)^2-4m_1m_2}=\sqrt{4\times 11}=2\sqrt{11} ∣AB∣=∣m1−m2∣=(m1+m2)2−4m1m2=4×11=211。
或者简单求解如下:
将直线 l l l的参数方程 { x = 2 + t y = 1 + 2 t ( t 为参数 ) \left\{\begin{array}{l}{x=2+t}\\{y=1+2t}\end{array}\right.(t为参数) {x=2+ty=1+2t(t为参数),代入圆的普通方程 x 2 + ( y − 2 ) 2 = 4 2 x^2+(y-2)^2=4^2 x2+(y−2)2=42中,
得到 ( 2 + t ) 2 + ( 2 t − 1 ) 2 = 4 2 (2+t)^2+(2t-1)^2=4^2 (2+t)2+(2t−1)2=42,整理得到 5 t 2 − 11 = 0 5t^2-11=0 5t2−11=0,
解得 t 1 = − 11 5 t_1=-\cfrac{\sqrt{11}}{\sqrt{5}} t1=−511, t 2 = 11 5 t_2=\cfrac{\sqrt{11}}{\sqrt{5}} t2=511,则 ∣ t 1 − t 2 ∣ = 2 11 5 |t_1-t_2|=\cfrac{2\sqrt{11}}{\sqrt{5}} ∣t1−t2∣=5211
故 ∣ A B ∣ = 1 2 + 2 2 ∣ t 1 − t 2 ∣ = 5 × 2 11 5 = 2 11 |AB|=\sqrt{1^2+2^2}|t_1-t_2|=\sqrt{5}\times \cfrac{2\sqrt{11}}{\sqrt{5}}=2\sqrt{11} ∣AB∣=12+22∣t1−t2∣=5×5211=211;
- 如何将一个直线的普通方程转化为参数方程?2
【2011新课标卷第22题】在直角坐标系 x o y xoy xoy中,曲线 C 1 C_1 C1的参数方程为 { x = 2 cos α y = 2 + 2 sin α \left\{\begin{array}{l}{x=2\cos\alpha}\\{y=2+2\sin\alpha}\end{array}\right.\quad {x=2cosαy=2+2sinα ( α \alpha α为参数) M M M是 C 1 C_1 C1上的动点, P P P点满足 O P → = 2 O M → \overrightarrow{OP}=2\overrightarrow{OM} OP=2OM, P P P点的轨迹为曲线 C 2 C_2 C2。
(1).求 C 2 C_2 C2的方程;
分析:本题目实质是采用相关点法求解,
法1:设点 P ( x , y ) P(x,y) P(x,y),由于 O P → = 2 O M → \overrightarrow{OP}=2\overrightarrow{OM} OP=2OM,则点 M ( x 2 , y 2 ) M(\cfrac{x}{2},\cfrac{y}{2}) M(2x,2y),
由于点 M M M是 C 1 C_1 C1上的点,故满足 C 1 C_1 C1的参数方程,即 { x 2 = 2 cos α y 2 = 2 + 2 sin α \left\{\begin{array}{l}{\cfrac{x}{2}=2\cos\alpha}\\{\cfrac{y}{2}=2+2\sin\alpha}\end{array}\right.\quad ⎩ ⎨ ⎧2x=2cosα2y=2+2sinα
即 { x = 4 cos α y = 4 + 4 sin α \left\{\begin{array}{l}{x=4\cos\alpha}\\{y=4+4\sin\alpha}\end{array}\right.\quad {x=4cosαy=4+4sinα,从而 C 2 C_2 C2的参数方程为 { x = 4 cos α y = 4 + 4 sin α \left\{\begin{array}{l}{x=4\cos\alpha}\\{y=4+4\sin\alpha}\end{array}\right.\quad {x=4cosαy=4+4sinα( α \alpha α为参数);
法2:首先消参得到曲线 C 1 C_1 C1的普通方程为 x 2 + ( y − 2 ) 2 = 4 x^2+(y-2)^2=4 x2+(y−2)2=4,
设点 P ( x , y ) P(x,y) P(x,y),由于 O P → = 2 O M → \overrightarrow{OP}=2\overrightarrow{OM} OP=2OM,则点 M ( x 2 , y 2 ) M(\cfrac{x}{2},\cfrac{y}{2}) M(2x,2y),
由于点 M M M是 C 1 C_1 C1上的点,故满足 C 1 C_1 C1的普通方程,即 ( x 2 ) 2 + ( y 2 − 2 ) 2 = 4 (\cfrac{x}{2})^2+(\cfrac{y}{2}-2)^2=4 (2x)2+(2y−2)2=4,
整理,即得到曲线 C 2 C_2 C2的普通方程为 x 2 + ( y − 4 ) 2 = 4 2 x^2+(y-4)^2=4^2 x2+(y−4)2=42;
法3:也可以在极坐标系下,采用相关点法,得到曲线 C 2 C_2 C2的极坐标方程为 ρ = 8 sin θ \rho=8\sin\theta ρ=8sinθ,具体过程略;
(2).在以 O O O为极点, x x x轴的正半轴为极轴的极坐标系中,射线 θ = π 3 \theta=\cfrac{\pi}{3} θ=3π与 C 1 C_1 C1的异于极点的交点为 A A A,与 C 2 C_2 C2的异于极点的交点为 B B B,求 ∣ A B ∣ |AB| ∣AB∣;
法1:曲线 C 1 C_1 C1的普通方程为 x 2 + ( y − 2 ) 2 = 4 x^2+(y-2)^2=4 x2+(y−2)2=4,曲线 C 2 C_2 C2的普通方程为 x 2 + ( y − 4 ) 2 = 4 2 x^2+(y-4)^2=4^2 x2+(y−4)2=42;
射线 θ = π 3 \theta=\cfrac{\pi}{3} θ=3π的普通方程为 y = 3 x ( x > 0 ) y=\sqrt{3}x(x>0) y=3x(x>0),联立求得点 A A A和 B B B的坐标,
再利用两点间的距离公式求得 ∣ A B ∣ |AB| ∣AB∣;此方法思维量小运算量大,容易出错;
法2:利用弦心距、半弦长、半径构成的 R t △ Rt\triangle Rt△求解弦长,再做差即可;
法3:由于线段 A B AB AB经过极点,故可以采用 ∣ A B ∣ = ∣ ρ A − ρ B ∣ |AB|=|\large{\rho}_{\tiny{A}}-\large{\rho}_{\tiny{B}}| ∣AB∣=∣ρA−ρB∣求解
曲线 C 1 C_1 C1的极坐标方程为 ρ = 4 sin θ \rho=4\sin\theta ρ=4sinθ;曲线 C 2 C_2 C2的极坐标方程为 ρ = 8 sin θ \rho=8\sin\theta ρ=8sinθ;
由 { θ = π 3 ρ = 4 sin θ \left\{\begin{array}{l}{\theta=\cfrac{\pi}{3}}\\{\rho=4\sin\theta}\end{array}\right.\quad ⎩ ⎨ ⎧θ=3πρ=4sinθ,得到 ρ A = 4 sin π 3 = 2 3 \large{\rho}_{\tiny{A}}=4\sin\cfrac{\pi}{3}=2\sqrt{3} ρA=4sin3π=23;
同理,由 { θ = π 3 ρ = 8 sin θ \left\{\begin{array}{l}{\theta=\cfrac{\pi}{3}}\\{\rho=8\sin\theta}\end{array}\right.\quad ⎩ ⎨ ⎧θ=3πρ=8sinθ,得到 ρ B = 8 sin π 3 = 4 3 \large{\rho}_{\tiny{B}}=8\sin\cfrac{\pi}{3}=4\sqrt{3} ρB=8sin3π=43;
故 ∣ A B ∣ = ∣ ρ A − ρ B ∣ = 2 3 |AB|=|\large{\rho}_{\tiny{A}}-\large{\rho}_{\tiny{B}}|=2\sqrt{3} ∣AB∣=∣ρA−ρB∣=23;
法4:利用平面几何知识, 3 0 ∘ 30^{\circ} 30∘, 6 0 ∘ 60^{\circ} 60∘, 9 0 ∘ 90^{\circ} 90∘的三角形知识,可以很快求得 ∣ O A ∣ = 2 3 |OA|=2\sqrt{3} ∣OA∣=23, ∣ O B ∣ = 4 3 |OB|=4\sqrt{3} ∣OB∣=43,
故 ∣ A B ∣ = ∣ O B ∣ − ∣ O A ∣ = 2 3 |AB|=|OB|-|OA|=2\sqrt{3} ∣AB∣=∣OB∣−∣OA∣=23;
直线和椭圆
- 直线和椭圆的弦长;其中以直线的参数方程法最为简单。常用方法:
①几何方法不再适用;
②弦长公式还能使用; ∣ A B ∣ = 1 + k 2 ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}|x_1-x_2| ∣AB∣=1+k2∣x1−x2∣,运算量稍大一些;
③直线的参数方程法; ∣ A B ∣ = ∣ t 1 − t 2 ∣ |AB|=|t_1-t_2| ∣AB∣=∣t1−t2∣,需要注意直线的参数方程必须是标准形式;
例子暂缺,
直线和双曲线
- 直线和双曲线的弦长;其中以直线的参数方程法最为简单。常用方法:
①几何方法不再适用;
②弦长公式还能使用; ∣ A B ∣ = 1 + k 2 ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}|x_1-x_2| ∣AB∣=1+k2∣x1−x2∣,运算量稍大一些;
③直线的参数方程法; ∣ A B ∣ = ∣ t 1 − t 2 ∣ |AB|=|t_1-t_2| ∣AB∣=∣t1−t2∣,需要注意直线的参数方程必须是标准形式;
例子暂缺,
直线和抛物线
- 直线和抛物线的弦长;其中以直线的参数方程法最为简单。常用方法:
①几何方法不再适用;
②弦长公式还能使用; ∣ A B ∣ = 1 + k 2 ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}|x_1-x_2| ∣AB∣=1+k2∣x1−x2∣,运算量稍大一些;
③直线的参数方程法; ∣ A B ∣ = ∣ t 1 − t 2 ∣ |AB|=|t_1-t_2| ∣AB∣=∣t1−t2∣,需要注意直线的参数方程必须是标准形式;
设抛物线 C : y 2 = 3 x C:y^2=3x C:y2=3x的焦点,过 F F F且倾斜角为 3 0 ∘ 30^{\circ} 30∘的直线交 C C C于 A A A, B B B两点,则 ∣ A B ∣ |AB| ∣AB∣等于【】
【法1】:常规方法,利用两点间距离公式,
由于 2 p = 3 2p=3 2p=3,则 p 2 = 3 4 \cfrac{p}{2}=\cfrac{3}{4} 2p=43,故焦点 F ( 3 4 , 0 ) F(\cfrac{3}{4},0) F(43,0),又斜率为 k = 3 3 k=\cfrac{\sqrt{3}}{3} k=33,
则直线 A B AB AB的方程为 y = 3 3 ( x − 3 4 ) y=\cfrac{\sqrt{3}}{3}(x-\cfrac{3}{4}) y=33(x−43),
联立直线 A B AB AB和抛物线方程,得到 { y 2 = 3 x y = 3 3 ( x − 3 4 ) \left\{\begin{array}{l}{y^2=3x}\\{y=\cfrac{\sqrt{3}}{3}(x-\cfrac{3}{4})}\end{array}\right. ⎩ ⎨ ⎧y2=3xy=33(x−43),

消 y y y得到 16 x 2 − 24 × 7 x + 9 = 0 16x^2-24\times7x+9=0 16x2−24×7x+9=0,设点 A ( x 1 , y 1 ) A(x_1,y_1) A(x1,y1),点 B ( x 2 , y 2 ) B(x_2,y_2) B(x2,y2),
则 x 1 + x 2 = 24 × 7 16 = 21 2 x_1+x_2=\cfrac{24\times7}{16}=\cfrac{21}{2} x1+x2=1624×7=221, x 1 x 2 = 9 16 x_1x_2=\cfrac{9}{16} x1x2=169,
故 ∣ A B ∣ = 1 + k 2 ⋅ ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}\cdot |x_1-x_2| ∣AB∣=1+k2⋅∣x1−x2∣ = 1 + k 2 ⋅ ( x 1 + x 2 ) 2 − 4 x 1 x 2 = 12 =\sqrt{1+k^2}\cdot\sqrt{(x_1+x_2)^2-4x_1x_2}=12 =1+k2⋅(x1+x2)2−4x1x2=12。
【法2】:利用直线 A B AB AB的参数方程的参数的几何意义,
直线 A B AB AB的参数方程为 { x = 3 4 + 3 2 t y = 0 + 1 2 t ( t 为参数 ) \begin{cases}x=\cfrac{3}{4}+\cfrac{\sqrt{3}}{2}t\\y=0+\cfrac{1}{2}t\end{cases}(t为参数) ⎩ ⎨ ⎧x=43+23ty=0+21t(t为参数),将其代入 y 2 = 3 x y^2=3x y2=3x中,
整理得到 t 2 − 6 3 t − 9 = 0 t^2-6\sqrt{3}t-9=0 t2−63t−9=0,设 A A A, B B B对应的参数分别为 t 1 t_1 t1, t 2 t_2 t2,
则 Δ > 0 \Delta>0 Δ>0,且有 t 1 + t 2 = 6 3 t_1+t_2=6\sqrt{3} t1+t2=63, t 1 t 2 = − 9 t_1t_2=-9 t1t2=−9,
故 ∣ A B ∣ = ∣ t 1 − t 2 ∣ = ( t 1 + t 2 ) 2 − 4 t 1 t 2 = 36 × 3 − 4 × ( − 9 ) = 12 |AB|=|t_1-t_2|=\sqrt{(t_1+t_2)^2-4t_1t_2}=\sqrt{36\times3-4\times(-9)}=12 ∣AB∣=∣t1−t2∣=(t1+t2)2−4t1t2=36×3−4×(−9)=12。
【法3】:利用抛物线的定义可知, ∣ A B ∣ = ∣ A F ∣ + ∣ B F ∣ = ∣ A N ∣ + ∣ B O ∣ = x 1 + p 2 + x 2 + p 2 = x 1 + x 2 + p |AB|=|AF|+|BF|=|AN|+|BO|=x_1+\cfrac{p}{2}+x_2+\cfrac{p}{2}=x_1+x_2+p ∣AB∣=∣AF∣+∣BF∣=∣AN∣+∣BO∣=x1+2p+x2+2p=x1+x2+p,

故由法1中,得到 x 1 + x 2 = 24 × 7 16 = 21 2 x_1+x_2=\cfrac{24\times7}{16}=\cfrac{21}{2} x1+x2=1624×7=221, p = 3 2 p=\cfrac{3}{2} p=23,即 ∣ A B ∣ = x 1 + x 2 + p = 12 |AB|=x_1+x_2+p=12 ∣AB∣=x1+x2+p=12。
法4:利用抛物线的焦点弦长公式: ∣ A B ∣ = 2 p s i n 2 α |AB|=\cfrac{2p}{sin^2\alpha} ∣AB∣=sin2α2p,则 ∣ A B ∣ = 2 × 3 2 ( 1 2 ) 2 = 12 |AB|=\cfrac{2\times \frac{3}{2}}{(\frac{1}{2})^2}=12 ∣AB∣=(21)22×23=12。
典例剖析
【2019届理科数学周末训练1第22题】已知直线 l l l的极坐标方程为 ρ s i n ( θ − π 3 ) = 0 \rho sin(\theta-\cfrac{\pi}{3})=0 ρsin(θ−3π)=0,以极点为平面直角坐标系的原点,极轴为 x x x轴的正半轴,建立平面直角坐标系,曲线 C C C的参数方程为 { x = 2 c o s α y = 2 + 2 s i n α \left\{\begin{array}{l}{x=2cos\alpha}\\{y=2+2sin\alpha}\end{array}\right. {x=2cosαy=2+2sinα ( α 为参数 ) (\alpha为参数) (α为参数)。课件
(1)求直线 l l l被曲线 C C C截得的弦长 ∣ O A ∣ |OA| ∣OA∣.
分析:可以从以下四个角度思考,
①利用两点间的距离公式;
【法1】直线 l l l的普通方程为 y = 3 x y=\sqrt{3}x y=3x,圆 C C C的普通方程为 x 2 + ( y − 2 ) 2 = 2 2 x^2+(y-2)^2=2^2 x2+(y−2)2=22,
联立消掉 y y y,得到 x 2 − 3 x = 0 x^2-\sqrt{3}x=0 x2−3x=0,
解得, { x 1 = 0 y 1 = 0 \left\{\begin{array}{l}{x_1=0}\\{y_1=0}\end{array}\right. {x1=0y1=0,或 { x 2 = 3 y 2 = 3 \left\{\begin{array}{l}{x_2=\sqrt{3}}\\{y_2=3}\end{array}\right. {x2=3y2=3,
由两点间距离公式得到 ∣ O A ∣ = 2 3 |OA|=2\sqrt{3} ∣OA∣=23。
②直线和圆相交求弦长的几何方法;
【法2】直线为 3 x − y = 0 \sqrt{3}x-y=0 3x−y=0,圆心为 ( 0 , 2 ) (0,2) (0,2),
则圆心到直线的距离为 d = ∣ 0 − 2 ∣ 2 = 1 d=\cfrac{|0-2|}{2}=1 d=2∣0−2∣=1,又半径为 2 2 2,
故半弦长为 2 2 − 1 2 = 3 \sqrt{2^2-1^2}=\sqrt{3} 22−12=3,则弦长 ∣ O A ∣ = 2 3 |OA|=2\sqrt{3} ∣OA∣=23。
③直线的参数方程法;
【法3】由于直线的普通方程为 y = 3 x y=\sqrt{3}x y=3x,
经过点 ( 0 , 0 ) (0,0) (0,0),斜率 k = t a n θ = 3 k=tan\theta=\sqrt{3} k=tanθ=3,
直线 l l l的参数方程为 { x = 0 + 1 2 t y = 0 + 3 2 t ( t 为参数 ) \left\{\begin{array}{l}{x=0+\cfrac{1}{2}t}\\{y=0+\cfrac{\sqrt{3}}{2}t}\end{array}\right.(t为参数) ⎩ ⎨ ⎧x=0+21ty=0+23t(t为参数),
将其代入圆的普通方程 x 2 + ( y − 2 ) 2 = 2 2 x^2+(y-2)^2=2^2 x2+(y−2)2=22,
整理得到 t 2 − 2 3 t = 0 t^2-2\sqrt{3}t=0 t2−23t=0,
解得 t 1 = 0 t_1=0 t1=0, t 2 = 2 3 t_2=2\sqrt{3} t2=23,
则弦长 ∣ O A ∣ = ∣ t 1 − t 2 ∣ = 2 3 |OA|=|t_1-t_2|=2\sqrt{3} ∣OA∣=∣t1−t2∣=23。
④极坐标法;
【法4】直线的极坐标方程为 θ = π 3 \theta=\cfrac{\pi}{3} θ=3π,
圆的极坐标方程为 ρ = 4 s i n θ \rho=4sin\theta ρ=4sinθ,
二者联立,得到 ρ = 4 s i n π 3 = 2 3 \rho=4sin\cfrac{\pi}{3}=2\sqrt{3} ρ=4sin3π=23。
即所求弦长 ∣ O A ∣ = 2 3 |OA|=2\sqrt{3} ∣OA∣=23。
(2)从极点做曲线 C C C的弦,求弦的中点 M M M轨迹的极坐标方程。
分析:可以从以下三个角度思考:
①利用平面直角坐标系下的中点公式;
【法1】相关点法,在平面直角坐标系中,设过坐标原点的直线和圆相交于点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0),则所得弦的中点坐标为 M ( x , y ) M(x,y) M(x,y)
则 { 2 x = x 0 2 y = y 0 \left\{\begin{array}{l}{2x=x_0}\\{2y=y_0}\end{array}\right. {2x=x02y=y0,又点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0)在圆 x 2 + ( y − 2 ) 2 = 2 2 x^2+(y-2)^2=2^2 x2+(y−2)2=22上,
代入整理得到普通方程为 x 2 + ( y − 1 ) 2 = 1 x^2+(y-1)^2=1 x2+(y−1)2=1,
即其极坐标方程为 ρ = 2 s i n θ \rho=2sin\theta ρ=2sinθ,
其中 α ∈ ( 0 , π ) \alpha\in(0,\pi) α∈(0,π),而不是 α ∈ [ 0 , π ) \alpha\in[0,\pi) α∈[0,π),以保证弦的存在。
②利用圆的参数方程;
由于圆上任意一动点 P P P的坐标 P ( 2 c o s θ , 2 + 2 s i n θ ) P(2cos\theta,2+2sin\theta) P(2cosθ,2+2sinθ),则弦的中点 M ( c o s θ , 1 + s i n θ ) M(cos\theta,1+sin\theta) M(cosθ,1+sinθ),
即点 M M M的参数方程为 { x = c o s θ y = 1 + s i n θ ( θ 为参数 ) \left\{\begin{array}{l}{x=cos\theta}\\{y=1+sin\theta}\end{array}\right.(\theta为参数) {x=cosθy=1+sinθ(θ为参数),
消去参数 θ \theta θ,得到普通方程为 x 2 + ( y − 1 ) 2 = 1 x^2+(y-1)^2=1 x2+(y−1)2=1,
即其极坐标方程为 ρ = 2 s i n θ \rho=2sin\theta ρ=2sinθ,
其中 α ∈ ( 0 , π ) \alpha\in(0,\pi) α∈(0,π),而不是 α ∈ [ 0 , π ) \alpha\in[0,\pi) α∈[0,π),以保证弦的存在。
③利用极坐标法;
【法3】曲线 C C C的极坐标方程为 ρ = 4 s i n θ \rho=4sin\theta ρ=4sinθ,
过极点的直线的极坐标方程为 θ = α \theta=\alpha θ=α,
设直线和曲线 C C C的交点的极坐标为 ( ρ 1 , α ) (\rho_1,\alpha) (ρ1,α),
则弦的中点 M M M的极坐标为 ( ρ , α ) (\rho,\alpha) (ρ,α),
由题目可知, ρ 1 = 2 ρ \rho_1=2\rho ρ1=2ρ,代入曲线 C C C的极坐标方程为 2 ρ = 4 s i n α 2\rho=4sin\alpha 2ρ=4sinα,
得到 ρ = 2 s i n α \rho=2sin\alpha ρ=2sinα,其中 α ∈ ( 0 , π ) \alpha\in(0,\pi) α∈(0,π)。
故弦的中点 M M M轨迹的极坐标方程为 ρ = 2 s i n α \rho=2sin\alpha ρ=2sinα,其中 α ∈ ( 0 , π ) \alpha\in(0,\pi) α∈(0,π)。
说明:由于弦的中点要存在,则必须保证 ρ ≠ 0 \rho\neq 0 ρ=0,即原来的 α ∈ [ 0 , π ) \alpha\in[0,\pi) α∈[0,π),必须变为 α ∈ ( 0 , π ) \alpha\in(0,\pi) α∈(0,π)。
对应练习
已知点 M M M在圆 C : x 2 + y 2 − 4 y + 3 = 0 C:x^2+y^2-4y+3=0 C:x2+y2−4y+3=0上,点 N N N在曲线 y = 1 + l n x y=1+lnx y=1+lnx上,则线段 M N MN MN的长度的最小值为_______。
提示:曲线 y = 1 + l n x y=1+lnx y=1+lnx的切线为 y = x y=x y=x,则原问题转化为点 ( c o s θ , 2 + s i n θ ) (cos\theta,2+sin\theta) (cosθ,2+sinθ)到直线 x − y = 0 x-y=0 x−y=0的点线距。 d m i n = 2 − 1 d_{min}=\sqrt{2}-1 dmin=2−1。
设直线方程为 y = k x + b y=kx+b y=kx+b,两个交点为点 A ( x 1 , y 1 ) A(x_1,y_1) A(x1,y1), B ( x 2 , y 2 ) B(x_2,y_2) B(x2,y2);
则由平面内任意两点间的距离公式可得,
∣ A B ∣ = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 = ( x 1 − x 2 ) 2 + [ ( k x 1 + b ) − ( k x 2 + b ) ] 2 |AB|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=\sqrt{(x_1-x_2)^2+[(kx_1+b)-(kx_2+b)]^2} ∣AB∣=(x1−x2)2+(y1−y2)2=(x1−x2)2+[(kx1+b)−(kx2+b)]2
= ( x 1 − x 2 ) 2 + k 2 ( x 1 − x 2 ) 2 = 1 + k 2 ⋅ ( x 1 − x 2 ) 2 =\sqrt{(x_1-x_2)^2+k^2(x_1-x_2)^2}=\sqrt{1+k^2}\cdot \sqrt{(x_1-x_2)^2} =(x1−x2)2+k2(x1−x2)2=1+k2⋅(x1−x2)2
= 1 + k 2 ⋅ ∣ x 1 − x 2 ∣ =\sqrt{1+k^2}\cdot |x_1-x_2| =1+k2⋅∣x1−x2∣
即弦长公式用 x x x 坐标表达为: ∣ A B ∣ = 1 + k 2 ⋅ ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}\cdot |x_1-x_2| ∣AB∣=1+k2⋅∣x1−x2∣;
∣ A B ∣ = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 = ( y 1 − b k − y 2 − b k ) 2 + ( y 1 − y 2 ) 2 |AB|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=\sqrt{(\frac{y_1-b}{k}-\frac{y_2-b}{k})^2+(y_1-y_2)^2} ∣AB∣=(x1−x2)2+(y1−y2)2=(ky1−b−ky2−b)2+(y1−y2)2
= ( y 1 − y 2 ) 2 k 2 + ( y 1 − y 2 ) 2 = 1 + 1 k 2 ⋅ ( y 1 − y 2 ) 2 =\sqrt{\frac{(y_1-y_2)^2}{k^2}+(y_1-y_2)^2}=\sqrt{1+\frac{1}{k^2}}\cdot \sqrt{(y_1-y_2)^2} =k2(y1−y2)2+(y1−y2)2=1+k21⋅(y1−y2)2
= 1 + 1 k 2 ⋅ ∣ y 1 − y 2 ∣ =\sqrt{1+\frac{1}{k^2}}\cdot |y_1-y_2| =1+k21⋅∣y1−y2∣
即弦长公式用 y y y 坐标表达为: ∣ A B ∣ = 1 + 1 k 2 ⋅ ∣ y 1 − y 2 ∣ |AB|=\sqrt{1+\frac{1}{k^2}}\cdot |y_1-y_2| ∣AB∣=1+k21⋅∣y1−y2∣;
综上所述,故弦长公式可表示为: ∣ A B ∣ = 1 + k 2 ⋅ ∣ x 1 − x 2 ∣ = 1 + 1 k 2 ⋅ ∣ y 1 − y 2 ∣ |AB|=\sqrt{1+k^2}\cdot |x_1-x_2|=\sqrt{1+\frac{1}{k^2}}\cdot |y_1-y_2| ∣AB∣=1+k2⋅∣x1−x2∣=1+k21⋅∣y1−y2∣
具体使用时,如下所示,为了和韦达定理相联系。
∣ A B ∣ = 1 + k 2 ⋅ ∣ x 1 − x 2 ∣ = 1 + k 2 ⋅ ∣ x 1 − x 2 ∣ 2 |AB|=\sqrt{1+k^2}\cdot |x_1-x_2|=\sqrt{1+k^2}\cdot\sqrt{ |x_1-x_2|^2} ∣AB∣=1+k2⋅∣x1−x2∣=1+k2⋅∣x1−x2∣2
= 1 + k 2 ⋅ x 1 2 + x 2 2 − 2 x 1 x 2 =\sqrt{1+k^2}\cdot\sqrt{ x_1^2+x_2^2-2x_1x_2} =1+k2⋅x12+x22−2x1x2
= 1 + k 2 ⋅ x 1 2 + x 2 2 + 2 x 1 x 2 − 4 x 1 x 2 =\sqrt{1+k^2}\cdot\sqrt{ x_1^2+x_2^2+2x_1x_2-4x_1x_2} =1+k2⋅x12+x22+2x1x2−4x1x2
= 1 + k 2 ⋅ ( x 1 + x 2 ) 2 − 4 x 1 x 2 =\sqrt{1+k^2}\cdot\sqrt{(x_1+x_2)^2-4x_1x_2} =1+k2⋅(x1+x2)2−4x1x2,
综上所述 ∣ A B ∣ = 1 + k 2 ⋅ ( x 1 + x 2 ) 2 − 4 x 1 x 2 = 1 + ( 1 k ) 2 ⋅ ( y 1 + y 2 ) 2 − 4 y 1 y 2 |AB|=\sqrt{1+k^2}\cdot\sqrt{(x_1+x_2)^2-4x_1x_2}=\sqrt{1+(\cfrac{1}{k})^2}\cdot\sqrt{(y_1+y_2)^2-4y_1y_2} ∣AB∣=1+k2⋅(x1+x2)2−4x1x2=1+(k1)2⋅(y1+y2)2−4y1y2 ↩︎如给定直线 y = 2 x + 1 y=2x+1 y=2x+1,其中点 ( 0 , 1 ) (0,1) (0,1),点 ( 1 , 3 ) (1,3) (1,3)都在其上,
我们现在想求做过点 ( 1 , 3 ) (1,3) (1,3)的直线 y = 2 x + 1 y=2x+1 y=2x+1的参数方程,
可以这样做,依照模板 { x = x 0 + c o s θ ⋅ t y = y 0 + s i n θ ⋅ t ( t 为参数 ) \left\{\begin{array}{l}{x=x_0+cos\theta \cdot t}\\{y=y_0+sin\theta\cdot t}\end{array}\right.(t为参数) {x=x0+cosθ⋅ty=y0+sinθ⋅t(t为参数)
定点坐标为 ( x 0 , y 0 ) = ( 1 , 3 ) (x_0,y_0)=(1,3) (x0,y0)=(1,3),
可知 k = t a n θ = 2 k=tan\theta=2 k=tanθ=2,引入非零比例因子 k k k,
得到 s i n θ = 2 k sin\theta=2k sinθ=2k, c o s θ = k ( k > 0 ) cos\theta=k(k>0) cosθ=k(k>0),
由 s i n 2 θ + c o s 2 θ = 1 sin^2\theta+cos^2\theta=1 sin2θ+cos2θ=1,得到 k = 5 5 k=\cfrac{\sqrt{5}}{5} k=55,
则可知 c o s θ = 5 5 cos\theta=\cfrac{\sqrt{5}}{5} cosθ=55, s i n θ = 2 5 5 sin\theta=\cfrac{2\sqrt{5}}{5} sinθ=525
故所给定直线 y = 2 x + 1 y=2x+1 y=2x+1的参数方程为
{ x = 1 + 5 5 t y = 3 + 2 5 5 t ( t 为参数 ) \left\{\begin{array}{l}{x=1+\cfrac{\sqrt{5}}{5} t}\\{y=3+\cfrac{2\sqrt{5}}{5} t}\end{array}\right.(t为参数) ⎩ ⎨ ⎧x=1+55ty=3+525t(t为参数)
总结思路:①找个定点;②求解 c o s θ cos\theta cosθ和 s i n θ sin\theta sinθ;③带入模板,OK! ↩︎