求弦长或线段长

前言

求弦长问题,常见于直线和圆,直线和椭圆,直线和双曲线,直线和抛物线相交所形成的弦的长度问题。

弦长公式

  • 直角坐标系下,针对直线和曲线的普通方程, ∣ A B ∣ = 1 + k 2 ⋅ ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}\cdot |x_1-x_2| AB=1+k2 x1x2,推导过程1
  • 直角坐标系下,针对直线的参数方程和曲线的普通方程, ∣ A B ∣ = ∣    t 1 − t 2    ∣ |AB|=|\;t_1-t_2 \;| AB=t1t2

  • 极坐标系下,针对点 O O O A A A B B B三点共线的情形, ∣ A B ∣ = ∣    ρ A − ρ B    ∣ |AB|=|\;\large{\rho}_{\tiny{A}}-\large{\rho}_{\tiny{B}}\;| AB=ρAρB

直线和圆

  • 求直线和圆的弦长常用方法;其中以几何方法最为简单。

①几何方法;利用弦心距、半弦长、半径所形成的 R t Δ Rt\Delta RtΔ求解,还用到点到直线的距离公式。弦长 = 2 R 2 − d 2 =2\sqrt{R^2-d^2} =2R2d2 ;

②弦长公式; ∣ A B ∣ = 1 + k 2 ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}|x_1-x_2| AB=1+k2 x1x2,运算量稍大一些;

③直线的参数方程法; ∣ A B ∣ = ∣ t 1 − t 2 ∣ |AB|=|t_1-t_2| AB=t1t2,此时需要注意直线的参数方程必须是标准形式,这种方法不太好理解。

【2019届凤中高三理科月考1第22题】在平面直角坐标系 x o y xoy xoy中,直线 l l l的参数方程为 { x = 2 + t y = 1 + 2 t \left\{\begin{array}{l}{x=2+t}\\{y=1+2t}\end{array}\right. {x=2+ty=1+2t( t t t为参数),以原点为极点,以 x x x轴的非负半轴为极轴建立极坐标系, ⊙ C \odot C C的极坐标方程为 ρ 2 \rho^2 ρ2 − 4 ρ ⋅ sin ⁡ θ − 12 = 0 -4\rho\cdot\sin\theta-12=0 4ρsinθ12=0

(1)、 求 ⊙ C \odot C C的参数方程;

分析:将 ρ 2 = x 2 + y 2 \rho^2=x^2+y^2 ρ2=x2+y2 y = ρ ⋅ s i n θ y=\rho\cdot sin\theta y=ρsinθ,代入 ⊙ C \odot C C的极坐标方程 ρ 2 − 4 ρ s i n θ − 12 = 0 \rho^2-4\rho sin\theta-12=0 ρ24ρsinθ12=0

得到 ⊙ C \odot C C的直角坐标方程为 x 2 + y 2 − 4 y − 12 = 0 x^2+y^2-4y-12=0 x2+y24y12=0,即 x 2 + ( y − 2 ) 2 = 16 = 4 2 x^2+(y-2)^2=16=4^2 x2+(y2)2=16=42

⊙ C \odot C C的参数方程为 { x = 4 c o s θ y = 2 + 4 s i n θ \left\{\begin{array}{l}{x=4cos\theta}\\{y=2+4sin\theta}\end{array}\right. {x=4cosθy=2+4sinθ ( θ \theta θ为参数, θ ∈ [ 0 , 2 π ) \theta\in [0,2\pi) θ[02π))。

(2)、求直线 l l l ⊙ C \odot C C截得的弦长。

【法1】几何方法,利用 R t Δ Rt\Delta RtΔ求解,将直线 l l l的参数方程消参,得到其普通方程为 2 x − y − 3 = 0 2x-y-3=0 2xy3=0

则圆心 ( 0 , 2 ) (0,2) (02)到直线的距离为 d = ∣ − 2 − 3 ∣ 2 2 + 1 2 = 5 d=\cfrac{|-2-3|}{\sqrt{2^2+1^2}}=\sqrt{5} d=22+12 23∣=5

则直线 l l l ⊙ C \odot C C截得的弦长为 2 r 2 − d 2 = 2 4 2 − ( 5 ) 2 = 2 11 2\sqrt{r^2-d^2}=2\sqrt{4^2-(\sqrt{5})^2}=2\sqrt{11} 2r2d2 =242(5 )2 =211

【法2】弦长公式,设直线和圆的交点为 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) A(x_1,y_1),B(x_2,y_2) A(x1y1)B(x2y2)

联立得到方程组, { 2 x − y − 3 = 0 x 2 + y 2 − 4 y − 12 = 0 \left\{\begin{array}{l}{2x-y-3=0}\\{x^2+y^2-4y-12=0}\end{array}\right. {2xy3=0x2+y24y12=0

消去 y y y得到, x 2 + ( 2 x − 3 ) 2 − 4 ( 2 x − 3 ) − 12 = 0 x^2+(2x-3)^2-4(2x-3)-12=0 x2+(2x3)24(2x3)12=0,整理得到, 5 x 2 − 20 x + 9 = 0 5x^2-20x+9=0 5x220x+9=0

由韦达定理得到, x 1 + x 2 = 4 x_1+x_2=4 x1+x2=4 x 1 x 2 = 9 5 x_1x_2=\cfrac{9}{5} x1x2=59

由弦长公式得到, ∣ A B ∣ = 1 + k 2 ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}|x_1-x_2| AB=1+k2 x1x2 = 1 + 2 2 ( x 1 + x 2 ) 2 − 4 x 1 x 2 =\sqrt{1+2^2}\sqrt{(x_1+x_2)^2-4x_1x_2} =1+22 (x1+x2)24x1x2

= 5 16 − 36 5 = 2 11 =\sqrt{5}\sqrt{16-\cfrac{36}{5}}=2\sqrt{11} =5 16536 =211

【法3】利用直线的参数方程求解,需要先判断参数方程是否为标准形式;若不是,还需要转化为标准形式。

直线 l l l的参数方程为 { x = 2 + t y = 1 + 2 t ( t 为参数 ) \left\{\begin{array}{l}{x=2+t}\\{y=1+2t}\end{array}\right.(t为参数) {x=2+ty=1+2t(t为参数)

(此时千万要注意,弦长 ∣ A B ∣ ≠ ∣ t 1 − t 2 ∣ |AB|\neq |t_1-t_2| AB=t1t2,原因是这个参数方程不是标准形式的)

将其做如下的转化,

{ x = 2 + 1 5 ⋅ 5 t y = 1 + 2 5 ⋅ 5 t ( t 为参数 ) \left\{\begin{array}{l}{x=2+\cfrac{1}{\sqrt{5}}\cdot \sqrt{5}t}\\{y=1+\cfrac{2}{\sqrt{5}}\cdot \sqrt{5}t}\end{array}\right.(t为参数) x=2+5 15 ty=1+5 25 t(t为参数)

5 t = m \sqrt{5}t=m 5 t=m,则其参数方程的标准形式为

{ x = 2 + 1 5 ⋅ m y = 1 + 2 5 ⋅ m ( m 为参数 ) \left\{\begin{array}{l}{x=2+\cfrac{1}{\sqrt{5}}\cdot m}\\{y=1+\cfrac{2}{\sqrt{5}}\cdot m}\end{array}\right.(m为参数) x=2+5 1my=1+5 2m(m为参数)

[此时参数 m m m的几何意义才是动点到定点的距离的数量,千万要注意,即弦长 ∣ A B ∣ = ∣ m 1 − m 2 ∣ = 1 2 + 2 2 ∣ t 1 − t 2 ∣ |AB|=|m_1-m_2|=\sqrt{1^2+2^2}|t_1-t_2| AB=m1m2=12+22 t1t2]

将直线 l l l的参数方程的标准形式代入圆的普通方程得到,

( 2 + 1 5 m ) 2 + ( 1 + 2 5 m ) 2 − 4 ( 1 + 2 5 m ) − 12 = 0 (2+\cfrac{1}{\sqrt{5}}m)^2+(1+\cfrac{2}{\sqrt{5}}m)^2-4(1+\cfrac{2}{\sqrt{5}}m)-12=0 (2+5 1m)2+(1+5 2m)24(1+5 2m)12=0

整理为 m 2 − 11 = 0 m^2-11=0 m211=0,令直线和圆的两个交点 A , B A,B AB分别对应的参数为 m 1 , m 2 m_1,m_2 m1m2

m 1 + m 2 = 0 m_1+m_2=0 m1+m2=0 m 1 m 2 = − 11 m_1m_2=-11 m1m2=11

此时弦长 ∣ A B ∣ = ∣ m 1 − m 2 ∣ = ( m 1 + m 2 ) 2 − 4 m 1 m 2 = 4 × 11 = 2 11 |AB|=|m_1-m_2|=\sqrt{(m_1+m_2)^2-4m_1m_2}=\sqrt{4\times 11}=2\sqrt{11} AB=m1m2=(m1+m2)24m1m2 =4×11 =211

或者简单求解如下:

将直线 l l l的参数方程 { x = 2 + t y = 1 + 2 t ( t 为参数 ) \left\{\begin{array}{l}{x=2+t}\\{y=1+2t}\end{array}\right.(t为参数) {x=2+ty=1+2t(t为参数),代入圆的普通方程 x 2 + ( y − 2 ) 2 = 4 2 x^2+(y-2)^2=4^2 x2+(y2)2=42中,

得到 ( 2 + t ) 2 + ( 2 t − 1 ) 2 = 4 2 (2+t)^2+(2t-1)^2=4^2 (2+t)2+(2t1)2=42,整理得到 5 t 2 − 11 = 0 5t^2-11=0 5t211=0

解得 t 1 = − 11 5 t_1=-\cfrac{\sqrt{11}}{\sqrt{5}} t1=5 11 t 2 = 11 5 t_2=\cfrac{\sqrt{11}}{\sqrt{5}} t2=5 11 ,则 ∣ t 1 − t 2 ∣ = 2 11 5 |t_1-t_2|=\cfrac{2\sqrt{11}}{\sqrt{5}} t1t2=5 211

∣ A B ∣ = 1 2 + 2 2 ∣ t 1 − t 2 ∣ = 5 × 2 11 5 = 2 11 |AB|=\sqrt{1^2+2^2}|t_1-t_2|=\sqrt{5}\times \cfrac{2\sqrt{11}}{\sqrt{5}}=2\sqrt{11} AB=12+22 t1t2=5 ×5 211 =211 ;

  • 如何将一个直线的普通方程转化为参数方程?2

【2011新课标卷第22题】在直角坐标系 x o y xoy xoy中,曲线 C 1 C_1 C1的参数方程为 { x = 2 cos ⁡ α y = 2 + 2 sin ⁡ α \left\{\begin{array}{l}{x=2\cos\alpha}\\{y=2+2\sin\alpha}\end{array}\right.\quad {x=2cosαy=2+2sinα ( α \alpha α为参数) M M M C 1 C_1 C1上的动点, P P P点满足 O P → = 2 O M → \overrightarrow{OP}=2\overrightarrow{OM} OP =2OM P P P点的轨迹为曲线 C 2 C_2 C2

(1).求 C 2 C_2 C2的方程;

分析:本题目实质是采用相关点法求解,

法1:设点 P ( x , y ) P(x,y) P(x,y),由于 O P → = 2 O M → \overrightarrow{OP}=2\overrightarrow{OM} OP =2OM ,则点 M ( x 2 , y 2 ) M(\cfrac{x}{2},\cfrac{y}{2}) M(2x,2y)

由于点 M M M C 1 C_1 C1上的点,故满足 C 1 C_1 C1的参数方程,即 { x 2 = 2 cos ⁡ α y 2 = 2 + 2 sin ⁡ α \left\{\begin{array}{l}{\cfrac{x}{2}=2\cos\alpha}\\{\cfrac{y}{2}=2+2\sin\alpha}\end{array}\right.\quad 2x=2cosα2y=2+2sinα

{ x = 4 cos ⁡ α y = 4 + 4 sin ⁡ α \left\{\begin{array}{l}{x=4\cos\alpha}\\{y=4+4\sin\alpha}\end{array}\right.\quad {x=4cosαy=4+4sinα,从而 C 2 C_2 C2的参数方程为 { x = 4 cos ⁡ α y = 4 + 4 sin ⁡ α \left\{\begin{array}{l}{x=4\cos\alpha}\\{y=4+4\sin\alpha}\end{array}\right.\quad {x=4cosαy=4+4sinα( α \alpha α为参数);

法2:首先消参得到曲线 C 1 C_1 C1的普通方程为 x 2 + ( y − 2 ) 2 = 4 x^2+(y-2)^2=4 x2+(y2)2=4

设点 P ( x , y ) P(x,y) P(x,y),由于 O P → = 2 O M → \overrightarrow{OP}=2\overrightarrow{OM} OP =2OM ,则点 M ( x 2 , y 2 ) M(\cfrac{x}{2},\cfrac{y}{2}) M(2x,2y)

由于点 M M M C 1 C_1 C1上的点,故满足 C 1 C_1 C1的普通方程,即 ( x 2 ) 2 + ( y 2 − 2 ) 2 = 4 (\cfrac{x}{2})^2+(\cfrac{y}{2}-2)^2=4 (2x)2+(2y2)2=4

整理,即得到曲线 C 2 C_2 C2的普通方程为 x 2 + ( y − 4 ) 2 = 4 2 x^2+(y-4)^2=4^2 x2+(y4)2=42

法3:也可以在极坐标系下,采用相关点法,得到曲线 C 2 C_2 C2的极坐标方程为 ρ = 8 sin ⁡ θ \rho=8\sin\theta ρ=8sinθ,具体过程略;

(2).在以 O O O为极点, x x x轴的正半轴为极轴的极坐标系中,射线 θ = π 3 \theta=\cfrac{\pi}{3} θ=3π C 1 C_1 C1的异于极点的交点为 A A A,与 C 2 C_2 C2的异于极点的交点为 B B B,求 ∣ A B ∣ |AB| AB

法1:曲线 C 1 C_1 C1的普通方程为 x 2 + ( y − 2 ) 2 = 4 x^2+(y-2)^2=4 x2+(y2)2=4,曲线 C 2 C_2 C2的普通方程为 x 2 + ( y − 4 ) 2 = 4 2 x^2+(y-4)^2=4^2 x2+(y4)2=42

射线 θ = π 3 \theta=\cfrac{\pi}{3} θ=3π的普通方程为 y = 3 x ( x > 0 ) y=\sqrt{3}x(x>0) y=3 x(x>0),联立求得点 A A A B B B的坐标,

再利用两点间的距离公式求得 ∣ A B ∣ |AB| AB;此方法思维量小运算量大,容易出错;

法2:利用弦心距、半弦长、半径构成的 R t △ Rt\triangle Rt求解弦长,再做差即可;

法3:由于线段 A B AB AB经过极点,故可以采用 ∣ A B ∣ = ∣ ρ A − ρ B ∣ |AB|=|\large{\rho}_{\tiny{A}}-\large{\rho}_{\tiny{B}}| AB=ρAρB求解

曲线 C 1 C_1 C1的极坐标方程为 ρ = 4 sin ⁡ θ \rho=4\sin\theta ρ=4sinθ;曲线 C 2 C_2 C2的极坐标方程为 ρ = 8 sin ⁡ θ \rho=8\sin\theta ρ=8sinθ

{ θ = π 3 ρ = 4 sin ⁡ θ \left\{\begin{array}{l}{\theta=\cfrac{\pi}{3}}\\{\rho=4\sin\theta}\end{array}\right.\quad θ=3πρ=4sinθ,得到 ρ A = 4 sin ⁡ π 3 = 2 3 \large{\rho}_{\tiny{A}}=4\sin\cfrac{\pi}{3}=2\sqrt{3} ρA=4sin3π=23

同理,由 { θ = π 3 ρ = 8 sin ⁡ θ \left\{\begin{array}{l}{\theta=\cfrac{\pi}{3}}\\{\rho=8\sin\theta}\end{array}\right.\quad θ=3πρ=8sinθ,得到 ρ B = 8 sin ⁡ π 3 = 4 3 \large{\rho}_{\tiny{B}}=8\sin\cfrac{\pi}{3}=4\sqrt{3} ρB=8sin3π=43

∣ A B ∣ = ∣ ρ A − ρ B ∣ = 2 3 |AB|=|\large{\rho}_{\tiny{A}}-\large{\rho}_{\tiny{B}}|=2\sqrt{3} AB=ρAρB=23

法4:利用平面几何知识, 3 0 ∘ 30^{\circ} 30 6 0 ∘ 60^{\circ} 60 9 0 ∘ 90^{\circ} 90的三角形知识,可以很快求得 ∣ O A ∣ = 2 3 |OA|=2\sqrt{3} OA=23 ∣ O B ∣ = 4 3 |OB|=4\sqrt{3} OB=43

∣ A B ∣ = ∣ O B ∣ − ∣ O A ∣ = 2 3 |AB|=|OB|-|OA|=2\sqrt{3} AB=OBOA=23

直线和椭圆

  • 直线和椭圆的弦长;其中以直线的参数方程法最为简单。常用方法:

①几何方法不再适用;

②弦长公式还能使用; ∣ A B ∣ = 1 + k 2 ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}|x_1-x_2| AB=1+k2 x1x2,运算量稍大一些;

③直线的参数方程法; ∣ A B ∣ = ∣ t 1 − t 2 ∣ |AB|=|t_1-t_2| AB=t1t2,需要注意直线的参数方程必须是标准形式;

例子暂缺,

直线和双曲线

  • 直线和双曲线的弦长;其中以直线的参数方程法最为简单。常用方法:

①几何方法不再适用;

②弦长公式还能使用; ∣ A B ∣ = 1 + k 2 ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}|x_1-x_2| AB=1+k2 x1x2,运算量稍大一些;

③直线的参数方程法; ∣ A B ∣ = ∣ t 1 − t 2 ∣ |AB|=|t_1-t_2| AB=t1t2,需要注意直线的参数方程必须是标准形式;

例子暂缺,

直线和抛物线

  • 直线和抛物线的弦长;其中以直线的参数方程法最为简单。常用方法:

①几何方法不再适用;

②弦长公式还能使用; ∣ A B ∣ = 1 + k 2 ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}|x_1-x_2| AB=1+k2 x1x2,运算量稍大一些;

③直线的参数方程法; ∣ A B ∣ = ∣ t 1 − t 2 ∣ |AB|=|t_1-t_2| AB=t1t2,需要注意直线的参数方程必须是标准形式;

设抛物线 C : y 2 = 3 x C:y^2=3x Cy2=3x的焦点,过 F F F且倾斜角为 3 0 ∘ 30^{\circ} 30的直线交 C C C A A A B B B两点,则 ∣ A B ∣ |AB| AB等于【】

$A.\cfrac{\sqrt{30}}{3}$ $B.6$ $C.12$ $D.7\sqrt{3}$

【法1】:常规方法,利用两点间距离公式,

由于 2 p = 3 2p=3 2p=3,则 p 2 = 3 4 \cfrac{p}{2}=\cfrac{3}{4} 2p=43,故焦点 F ( 3 4 , 0 ) F(\cfrac{3}{4},0) F(430),又斜率为 k = 3 3 k=\cfrac{\sqrt{3}}{3} k=33

则直线 A B AB AB的方程为 y = 3 3 ( x − 3 4 ) y=\cfrac{\sqrt{3}}{3}(x-\cfrac{3}{4}) y=33 (x43)

联立直线 A B AB AB和抛物线方程,得到 { y 2 = 3 x y = 3 3 ( x − 3 4 ) \left\{\begin{array}{l}{y^2=3x}\\{y=\cfrac{\sqrt{3}}{3}(x-\cfrac{3}{4})}\end{array}\right. y2=3xy=33 (x43)

y y y得到 16 x 2 − 24 × 7 x + 9 = 0 16x^2-24\times7x+9=0 16x224×7x+9=0,设点 A ( x 1 , y 1 ) A(x_1,y_1) A(x1y1),点 B ( x 2 , y 2 ) B(x_2,y_2) B(x2y2)

x 1 + x 2 = 24 × 7 16 = 21 2 x_1+x_2=\cfrac{24\times7}{16}=\cfrac{21}{2} x1+x2=1624×7=221 x 1 x 2 = 9 16 x_1x_2=\cfrac{9}{16} x1x2=169

∣ A B ∣ = 1 + k 2 ⋅ ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}\cdot |x_1-x_2| AB=1+k2 x1x2 = 1 + k 2 ⋅ ( x 1 + x 2 ) 2 − 4 x 1 x 2 = 12 =\sqrt{1+k^2}\cdot\sqrt{(x_1+x_2)^2-4x_1x_2}=12 =1+k2 (x1+x2)24x1x2 =12

【法2】:利用直线 A B AB AB的参数方程的参数的几何意义,

直线 A B AB AB的参数方程为 { x = 3 4 + 3 2 t y = 0 + 1 2 t ( t 为参数 ) \begin{cases}x=\cfrac{3}{4}+\cfrac{\sqrt{3}}{2}t\\y=0+\cfrac{1}{2}t\end{cases}(t为参数) x=43+23 ty=0+21t(t为参数),将其代入 y 2 = 3 x y^2=3x y2=3x中,

整理得到 t 2 − 6 3 t − 9 = 0 t^2-6\sqrt{3}t-9=0 t263 t9=0,设 A A A B B B对应的参数分别为 t 1 t_1 t1 t 2 t_2 t2

Δ > 0 \Delta>0 Δ>0,且有 t 1 + t 2 = 6 3 t_1+t_2=6\sqrt{3} t1+t2=63 t 1 t 2 = − 9 t_1t_2=-9 t1t2=9

∣ A B ∣ = ∣ t 1 − t 2 ∣ = ( t 1 + t 2 ) 2 − 4 t 1 t 2 = 36 × 3 − 4 × ( − 9 ) = 12 |AB|=|t_1-t_2|=\sqrt{(t_1+t_2)^2-4t_1t_2}=\sqrt{36\times3-4\times(-9)}=12 AB=t1t2=(t1+t2)24t1t2 =36×34×(9) =12

【法3】:利用抛物线的定义可知, ∣ A B ∣ = ∣ A F ∣ + ∣ B F ∣ = ∣ A N ∣ + ∣ B O ∣ = x 1 + p 2 + x 2 + p 2 = x 1 + x 2 + p |AB|=|AF|+|BF|=|AN|+|BO|=x_1+\cfrac{p}{2}+x_2+\cfrac{p}{2}=x_1+x_2+p AB=AF+BF=AN+BO=x1+2p+x2+2p=x1+x2+p

故由法1中,得到 x 1 + x 2 = 24 × 7 16 = 21 2 x_1+x_2=\cfrac{24\times7}{16}=\cfrac{21}{2} x1+x2=1624×7=221 p = 3 2 p=\cfrac{3}{2} p=23,即 ∣ A B ∣ = x 1 + x 2 + p = 12 |AB|=x_1+x_2+p=12 AB=x1+x2+p=12

法4:利用抛物线的焦点弦长公式: ∣ A B ∣ = 2 p s i n 2 α |AB|=\cfrac{2p}{sin^2\alpha} AB=sin2α2p,则 ∣ A B ∣ = 2 × 3 2 ( 1 2 ) 2 = 12 |AB|=\cfrac{2\times \frac{3}{2}}{(\frac{1}{2})^2}=12 AB=(21)22×23=12

典例剖析

【2019届理科数学周末训练1第22题】已知直线 l l l的极坐标方程为 ρ s i n ( θ − π 3 ) = 0 \rho sin(\theta-\cfrac{\pi}{3})=0 ρsin(θ3π)=0,以极点为平面直角坐标系的原点,极轴为 x x x轴的正半轴,建立平面直角坐标系,曲线 C C C的参数方程为 { x = 2 c o s α y = 2 + 2 s i n α \left\{\begin{array}{l}{x=2cos\alpha}\\{y=2+2sin\alpha}\end{array}\right. {x=2cosαy=2+2sinα ( α 为参数 ) (\alpha为参数) (α为参数)课件

(1)求直线 l l l被曲线 C C C截得的弦长 ∣ O A ∣ |OA| OA.

分析:可以从以下四个角度思考,

①利用两点间的距离公式;

【法1】直线 l l l的普通方程为 y = 3 x y=\sqrt{3}x y=3 x,圆 C C C的普通方程为 x 2 + ( y − 2 ) 2 = 2 2 x^2+(y-2)^2=2^2 x2+(y2)2=22

联立消掉 y y y,得到 x 2 − 3 x = 0 x^2-\sqrt{3}x=0 x23 x=0

解得, { x 1 = 0 y 1 = 0 \left\{\begin{array}{l}{x_1=0}\\{y_1=0}\end{array}\right. {x1=0y1=0,或 { x 2 = 3 y 2 = 3 \left\{\begin{array}{l}{x_2=\sqrt{3}}\\{y_2=3}\end{array}\right. {x2=3 y2=3

由两点间距离公式得到 ∣ O A ∣ = 2 3 |OA|=2\sqrt{3} OA=23

②直线和圆相交求弦长的几何方法;

【法2】直线为 3 x − y = 0 \sqrt{3}x-y=0 3 xy=0,圆心为 ( 0 , 2 ) (0,2) (02)

则圆心到直线的距离为 d = ∣ 0 − 2 ∣ 2 = 1 d=\cfrac{|0-2|}{2}=1 d=2∣02∣=1,又半径为 2 2 2

故半弦长为 2 2 − 1 2 = 3 \sqrt{2^2-1^2}=\sqrt{3} 2212 =3 ,则弦长 ∣ O A ∣ = 2 3 |OA|=2\sqrt{3} OA=23

③直线的参数方程法;

【法3】由于直线的普通方程为 y = 3 x y=\sqrt{3}x y=3 x

经过点 ( 0 , 0 ) (0,0) (00),斜率 k = t a n θ = 3 k=tan\theta=\sqrt{3} k=tanθ=3

直线 l l l的参数方程为 { x = 0 + 1 2 t y = 0 + 3 2 t ( t 为参数 ) \left\{\begin{array}{l}{x=0+\cfrac{1}{2}t}\\{y=0+\cfrac{\sqrt{3}}{2}t}\end{array}\right.(t为参数) x=0+21ty=0+23 t(t为参数)

将其代入圆的普通方程 x 2 + ( y − 2 ) 2 = 2 2 x^2+(y-2)^2=2^2 x2+(y2)2=22

整理得到 t 2 − 2 3 t = 0 t^2-2\sqrt{3}t=0 t223 t=0

解得 t 1 = 0 t_1=0 t1=0 t 2 = 2 3 t_2=2\sqrt{3} t2=23

则弦长 ∣ O A ∣ = ∣ t 1 − t 2 ∣ = 2 3 |OA|=|t_1-t_2|=2\sqrt{3} OA=t1t2=23

④极坐标法;

【法4】直线的极坐标方程为 θ = π 3 \theta=\cfrac{\pi}{3} θ=3π

圆的极坐标方程为 ρ = 4 s i n θ \rho=4sin\theta ρ=4sinθ

二者联立,得到 ρ = 4 s i n π 3 = 2 3 \rho=4sin\cfrac{\pi}{3}=2\sqrt{3} ρ=4sin3π=23

即所求弦长 ∣ O A ∣ = 2 3 |OA|=2\sqrt{3} OA=23

(2)从极点做曲线 C C C的弦,求弦的中点 M M M轨迹的极坐标方程。

分析:可以从以下三个角度思考:

①利用平面直角坐标系下的中点公式;

【法1】相关点法,在平面直角坐标系中,设过坐标原点的直线和圆相交于点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0y0),则所得弦的中点坐标为 M ( x , y ) M(x,y) M(xy)

{ 2 x = x 0 2 y = y 0 \left\{\begin{array}{l}{2x=x_0}\\{2y=y_0}\end{array}\right. {2x=x02y=y0,又点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0y0)在圆 x 2 + ( y − 2 ) 2 = 2 2 x^2+(y-2)^2=2^2 x2+(y2)2=22上,

代入整理得到普通方程为 x 2 + ( y − 1 ) 2 = 1 x^2+(y-1)^2=1 x2+(y1)2=1

即其极坐标方程为 ρ = 2 s i n θ \rho=2sin\theta ρ=2sinθ

其中 α ∈ ( 0 , π ) \alpha\in(0,\pi) α(0π),而不是 α ∈ [ 0 , π ) \alpha\in[0,\pi) α[0π),以保证弦的存在。

②利用圆的参数方程;

由于圆上任意一动点 P P P的坐标 P ( 2 c o s θ , 2 + 2 s i n θ ) P(2cos\theta,2+2sin\theta) P(2cosθ2+2sinθ),则弦的中点 M ( c o s θ , 1 + s i n θ ) M(cos\theta,1+sin\theta) M(cosθ1+sinθ)

即点 M M M的参数方程为 { x = c o s θ y = 1 + s i n θ ( θ 为参数 ) \left\{\begin{array}{l}{x=cos\theta}\\{y=1+sin\theta}\end{array}\right.(\theta为参数) {x=cosθy=1+sinθ(θ为参数)

消去参数 θ \theta θ,得到普通方程为 x 2 + ( y − 1 ) 2 = 1 x^2+(y-1)^2=1 x2+(y1)2=1

即其极坐标方程为 ρ = 2 s i n θ \rho=2sin\theta ρ=2sinθ

其中 α ∈ ( 0 , π ) \alpha\in(0,\pi) α(0π),而不是 α ∈ [ 0 , π ) \alpha\in[0,\pi) α[0π),以保证弦的存在。

③利用极坐标法;

【法3】曲线 C C C的极坐标方程为 ρ = 4 s i n θ \rho=4sin\theta ρ=4sinθ

过极点的直线的极坐标方程为 θ = α \theta=\alpha θ=α

设直线和曲线 C C C的交点的极坐标为 ( ρ 1 , α ) (\rho_1,\alpha) (ρ1α)

则弦的中点 M M M的极坐标为 ( ρ , α ) (\rho,\alpha) (ρα)

由题目可知, ρ 1 = 2 ρ \rho_1=2\rho ρ1=2ρ,代入曲线 C C C的极坐标方程为 2 ρ = 4 s i n α 2\rho=4sin\alpha 2ρ=4sinα

得到 ρ = 2 s i n α \rho=2sin\alpha ρ=2sinα,其中 α ∈ ( 0 , π ) \alpha\in(0,\pi) α(0π)

故弦的中点 M M M轨迹的极坐标方程为 ρ = 2 s i n α \rho=2sin\alpha ρ=2sinα,其中 α ∈ ( 0 , π ) \alpha\in(0,\pi) α(0π)

说明:由于弦的中点要存在,则必须保证 ρ ≠ 0 \rho\neq 0 ρ=0,即原来的 α ∈ [ 0 , π ) \alpha\in[0,\pi) α[0π),必须变为 α ∈ ( 0 , π ) \alpha\in(0,\pi) α(0π)

对应练习

已知点 M M M在圆 C : x 2 + y 2 − 4 y + 3 = 0 C:x^2+y^2-4y+3=0 Cx2+y24y+3=0上,点 N N N在曲线 y = 1 + l n x y=1+lnx y=1+lnx上,则线段 M N MN MN的长度的最小值为_______。

提示:曲线 y = 1 + l n x y=1+lnx y=1+lnx的切线为 y = x y=x y=x,则原问题转化为点 ( c o s θ , 2 + s i n θ ) (cos\theta,2+sin\theta) (cosθ2+sinθ)到直线 x − y = 0 x-y=0 xy=0的点线距。 d m i n = 2 − 1 d_{min}=\sqrt{2}-1 dmin=2 1


  1. 设直线方程为 y = k x + b y=kx+b y=kx+b,两个交点为点 A ( x 1 , y 1 ) A(x_1,y_1) A(x1y1) B ( x 2 , y 2 ) B(x_2,y_2) B(x2y2)
    则由平面内任意两点间的距离公式可得,
    ∣ A B ∣ = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 = ( x 1 − x 2 ) 2 + [ ( k x 1 + b ) − ( k x 2 + b ) ] 2 |AB|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=\sqrt{(x_1-x_2)^2+[(kx_1+b)-(kx_2+b)]^2} AB=(x1x2)2+(y1y2)2 =(x1x2)2+[(kx1+b)(kx2+b)]2
    = ( x 1 − x 2 ) 2 + k 2 ( x 1 − x 2 ) 2 = 1 + k 2 ⋅ ( x 1 − x 2 ) 2 =\sqrt{(x_1-x_2)^2+k^2(x_1-x_2)^2}=\sqrt{1+k^2}\cdot \sqrt{(x_1-x_2)^2} =(x1x2)2+k2(x1x2)2 =1+k2 (x1x2)2
    = 1 + k 2 ⋅ ∣ x 1 − x 2 ∣ =\sqrt{1+k^2}\cdot |x_1-x_2| =1+k2 x1x2
    即弦长公式用 x x x 坐标表达为: ∣ A B ∣ = 1 + k 2 ⋅ ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}\cdot |x_1-x_2| AB=1+k2 x1x2
    ∣ A B ∣ = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 = ( y 1 − b k − y 2 − b k ) 2 + ( y 1 − y 2 ) 2 |AB|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=\sqrt{(\frac{y_1-b}{k}-\frac{y_2-b}{k})^2+(y_1-y_2)^2} AB=(x1x2)2+(y1y2)2 =(ky1bky2b)2+(y1y2)2
    = ( y 1 − y 2 ) 2 k 2 + ( y 1 − y 2 ) 2 = 1 + 1 k 2 ⋅ ( y 1 − y 2 ) 2 =\sqrt{\frac{(y_1-y_2)^2}{k^2}+(y_1-y_2)^2}=\sqrt{1+\frac{1}{k^2}}\cdot \sqrt{(y_1-y_2)^2} =k2(y1y2)2+(y1y2)2 =1+k21 (y1y2)2
    = 1 + 1 k 2 ⋅ ∣ y 1 − y 2 ∣ =\sqrt{1+\frac{1}{k^2}}\cdot |y_1-y_2| =1+k21 y1y2
    即弦长公式用 y y y 坐标表达为: ∣ A B ∣ = 1 + 1 k 2 ⋅ ∣ y 1 − y 2 ∣ |AB|=\sqrt{1+\frac{1}{k^2}}\cdot |y_1-y_2| AB=1+k21 y1y2
    综上所述,故弦长公式可表示为: ∣ A B ∣ = 1 + k 2 ⋅ ∣ x 1 − x 2 ∣ = 1 + 1 k 2 ⋅ ∣ y 1 − y 2 ∣ |AB|=\sqrt{1+k^2}\cdot |x_1-x_2|=\sqrt{1+\frac{1}{k^2}}\cdot |y_1-y_2| AB=1+k2 x1x2=1+k21 y1y2
    具体使用时,如下所示,为了和韦达定理相联系。
    ∣ A B ∣ = 1 + k 2 ⋅ ∣ x 1 − x 2 ∣ = 1 + k 2 ⋅ ∣ x 1 − x 2 ∣ 2 |AB|=\sqrt{1+k^2}\cdot |x_1-x_2|=\sqrt{1+k^2}\cdot\sqrt{ |x_1-x_2|^2} AB=1+k2 x1x2=1+k2 x1x22
    = 1 + k 2 ⋅ x 1 2 + x 2 2 − 2 x 1 x 2 =\sqrt{1+k^2}\cdot\sqrt{ x_1^2+x_2^2-2x_1x_2} =1+k2 x12+x222x1x2
    = 1 + k 2 ⋅ x 1 2 + x 2 2 + 2 x 1 x 2 − 4 x 1 x 2 =\sqrt{1+k^2}\cdot\sqrt{ x_1^2+x_2^2+2x_1x_2-4x_1x_2} =1+k2 x12+x22+2x1x24x1x2
    = 1 + k 2 ⋅ ( x 1 + x 2 ) 2 − 4 x 1 x 2 =\sqrt{1+k^2}\cdot\sqrt{(x_1+x_2)^2-4x_1x_2} =1+k2 (x1+x2)24x1x2
    综上所述 ∣ A B ∣ = 1 + k 2 ⋅ ( x 1 + x 2 ) 2 − 4 x 1 x 2 = 1 + ( 1 k ) 2 ⋅ ( y 1 + y 2 ) 2 − 4 y 1 y 2 |AB|=\sqrt{1+k^2}\cdot\sqrt{(x_1+x_2)^2-4x_1x_2}=\sqrt{1+(\cfrac{1}{k})^2}\cdot\sqrt{(y_1+y_2)^2-4y_1y_2} AB=1+k2 (x1+x2)24x1x2 =1+(k1)2 (y1+y2)24y1y2 ↩︎

  2. 如给定直线 y = 2 x + 1 y=2x+1 y=2x+1,其中点 ( 0 , 1 ) (0,1) (01),点 ( 1 , 3 ) (1,3) (13)都在其上,
    我们现在想求做过点 ( 1 , 3 ) (1,3) (13)的直线 y = 2 x + 1 y=2x+1 y=2x+1的参数方程,
    可以这样做,依照模板 { x = x 0 + c o s θ ⋅ t y = y 0 + s i n θ ⋅ t ( t 为参数 ) \left\{\begin{array}{l}{x=x_0+cos\theta \cdot t}\\{y=y_0+sin\theta\cdot t}\end{array}\right.(t为参数) {x=x0+cosθty=y0+sinθt(t为参数)
    定点坐标为 ( x 0 , y 0 ) = ( 1 , 3 ) (x_0,y_0)=(1,3) (x0y0)=(13)
    可知 k = t a n θ = 2 k=tan\theta=2 k=tanθ=2,引入非零比例因子 k k k
    得到 s i n θ = 2 k sin\theta=2k sinθ=2k c o s θ = k ( k > 0 ) cos\theta=k(k>0) cosθ=k(k>0)
    s i n 2 θ + c o s 2 θ = 1 sin^2\theta+cos^2\theta=1 sin2θ+cos2θ=1,得到 k = 5 5 k=\cfrac{\sqrt{5}}{5} k=55
    则可知 c o s θ = 5 5 cos\theta=\cfrac{\sqrt{5}}{5} cosθ=55 s i n θ = 2 5 5 sin\theta=\cfrac{2\sqrt{5}}{5} sinθ=525
    故所给定直线 y = 2 x + 1 y=2x+1 y=2x+1的参数方程为
    { x = 1 + 5 5 t y = 3 + 2 5 5 t ( t 为参数 ) \left\{\begin{array}{l}{x=1+\cfrac{\sqrt{5}}{5} t}\\{y=3+\cfrac{2\sqrt{5}}{5} t}\end{array}\right.(t为参数) x=1+55 ty=3+525 t(t为参数)
    总结思路:①找个定点;②求解 c o s θ cos\theta cosθ s i n θ sin\theta sinθ;③带入模板,OK! ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值