贝塞尔曲线理论

本文介绍了贝塞尔曲线的基本概念,包括其控制点特性、三次多项式方程,以及如何通过数学推导证明贝塞尔曲线的切线方向。文章还详细解释了如何将一个四控制点的贝塞尔曲线分割成两个曲线,保持形状不变的同时增加控制点数量,以实现更精细的局部调整。
摘要由CSDN通过智能技术生成

贝塞尔曲线(Cubic Bezier Curve)

  1. 贝塞尔曲线使用4个控制点 P 1 , P 2 , P 3 , P 4 P_1,P_2,P_3,P_4 P1,P2,P3,P4来控制曲线的形状
  2. 其中曲线通过 P 1 ( b e g i n ) , P 4 ( e n d ) P_1(begin),P_4(end) P1(begin),P4(end) 点,接近但不通过 P 2 , P 3 P_2,P_3 P2,P3
  3. 贝塞尔曲线的方程是一个三次多项式

以上就是贝塞尔曲线的一些基本特性,以下是贝塞尔曲线的公式。
P ( t ) = ( 1 − t ) 3 P 1 + 3 t ( 1 − t ) 2 P 2 + 3 t 2 ( 1 − t ) P 3 + t 3 P 4 P(t) = (1-t)^3P_1+3t(1-t)^2P_2+3t^2(1-t)P_3+t^3P_4 P(t)=(1t)3P1+3t(1t)2P2+3t2(1t)P3+t3P4
bezier
贝塞尔曲线在 P 1 P_1 P1处的切线从 P 1 P_1 P1指向 P 2 P_2 P2也就是 P 2 − P 1 P_2-P_1 P2P1下面简单证明:
P ( t ) ′ = − 3 ( 1 − t ) 2 P 1 + 3 ( 1 − t ) 2 P 2 − 6 t ( 1 − t ) P 2 + 6 t ( 1 − t ) P 3 − 3 t 2 P 3 + 3 t 2 P 4 P(t)'=-3(1-t)^2P_1+3(1-t)^2P_2-6t(1-t)P_2+6t(1-t)P_3-3t^2P_3+3t^2P_4 P(t)=3(1t)2P1+3(1t)2P26t(1t)P2+6t(1t)P33t2P3+3t2P4
P ( t ) P(t) P(t)求导得到上面的式子,令 t = 0 t=0 t=0,则得到 − 3 P 1 + 3 P 2 -3P_1+3P_2 3P1+3P2,则切线方向是 P 2 − P 1 P_2-P_1 P2P1,同理,令 t = 1 t=1 t=1,得到 3 P 4 − 3 P 3 3P_4-3P_3 3P43P3,则切线方向是 P 4 − P 3 P_4-P_3 P4P3

我们可以把控制点之前带有 t t t的式子看作是控制点的权重,则分别为
B 1 ( t ) , B 2 ( t ) , B 3 ( t ) , B 4 ( t ) B_1(t),B_2(t),B_3(t),B_4(t) B1(t),B2(t),B

  • 4
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值