2020硕博无人机文献调研(2)

本文调研了四旋翼无人机的姿态控制技术,重点介绍了南京邮电大学汪梓童基于反步法的滑模控制策略,以及中北大学余后明采用改进型BP神经网络的PID控制器设计。反步法通过递归设计控制量实现系统稳定性,滑模控制则利用变结构方法提高抗干扰性能。同时,提到了人工神经网络的并行性、非线性全局映射、自学习和容错性特点在PID控制中的应用。
摘要由CSDN通过智能技术生成

1. 四旋翼无人机姿态控制及抗干扰研究,南京邮电大学,汪梓童
创新点:
1.基于反步法的四旋翼无人机滑模姿态控制在对四旋翼无人机系统进行路径跟踪控制时,机体系统的空气动力模型受诸多因素的影响,会导致控制精度低、稳定性低等问题。而对于受不确定因素影响的四旋翼无人机系统,由于系统的运动与系统的外部扰动等因素是独立的,设计滑模控制器并进行改进可以较好的解决数学模型精度与外界干扰的问题,能够对不确定复杂系统进行有效的控制,并且可以增强系统鲁棒性以及跟踪精度。通过滑动模态的设计可以使得四旋翼无人机系统获得满意的动态品质,但是传统滑模控制有一个比较大的缺点,就是“抖振”的问题。
1.1反步法
反步法(Backstepping),Kanellakopoulos 和 Kokotovic 等在 1991 年最先提出的一种系统化的控制设计方法,如今是比较常见控制方法之一,适合于一些参数不确定的欠驱动的系统。该方法用到了分治算法的思想,将高阶复杂的系统的拆分成的低阶简单的子系统,在每一个子系统设计中,设计能够使前面子系统稳定的虚拟控制量,通过递归去构造整个系统的李亚普洛夫函数来获得反馈控制器,最终选取适当的控制律使得李亚普洛夫函数沿闭环系统轨迹有界,且轨迹趋于稳定。
详见:(华中科技大学硕士反步法讲解)
https://blog.csdn.net/weixin_42887138/article/details/109089396
https://blog.csdn.net/weixin_42887138/article/details/109164200
https://blog.csdn.net/weixin_42887138/article/details/109167727
1.2 滑膜控制<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值