论文阅读: VITAMIN-E: Extremely Dense Feature Points

Abstract

propose了一种非直接法叫"VITAMIN-E": 准确而鲁邦, 跟踪的是稠密特征.

传统非直接法对于重建稠密几何有难度因为他们对于点的选择(为了匹配)很慎重.

和传统的方法不同, 这个方法处理了大量的特征点通过跟踪局部的曲度的极值通过dominant flow estimation.

因为这可能会导致大量的计算量, 我们用subspace Gauss-Newton method通过局部更新变量来提升BA的计算量表现.

我们同时也会对于重建出来的点生成mesh然后用一个entire 3D model来融合他们.

1. Introduction

直接法:他们不要求准确的像素匹配, 但是直接法对于噪声, 光照抖动, 镜头aberration不鲁邦.

非直接法: 最小化几何误差. 非直接法显示的建立特征点的匹配, 外点可以很容易的被RANSAC或者是M-estimatio移除.

这个特性也可以是一个缺点: 使得重建的3D图很稀疏,也不会提供几何细节. 一些稠密的方法比如PMVS或者是L-PMVS可以用,但是都是不实时的.

我们的方法tracking了很大数量的特征点.

Contributions:

  1. 引入了一种新的dense feature point tracking algorithm基于dominant flow estimation和 curvature extrema tracing. 这使得VITAMIN-E可以处理大量的特征点
  2. 引入了一种optimization technique: subspace Gauss-Newton method.
  3. 根据特征点生成mesh, 然后用TSDF(truncated signed distance function)结合他们.

2. Dense Feature Point Tracking

2.1 Feature Point Tracking

用图像描述子的非直接法会不准因为不准确的特征点匹配.

光流法这种持续跟踪然后更新特征描述子的可能会有用, 但是如果跟的点开始有些及时是极少的漂移,那么多视图的跟踪结果就会不准确.

VITAMIN-E用了不同的方法, 它跟踪curvature的局部极值. 在我们的方法中, 特征点代表着图像intensities的curvature的极值.

\(f(x, y)\)表示图像, 图像的curvature是\(\kappa\).
\[ \kappa=f_{y}^{2} f_{x x}-2 f_{x} f_{y} f_{x y}+f_{x}^{2} f_{y y} \]
VITAMIN-E通过在图像序列跟踪curvature $\kappa (x, y, t) $来建立点的匹配.

1564370735393

上图的(a)表示了这个过程的一个案例.

2.2 Dominant Flow Estimation

在检测了curvature的极值以后, 然后dominant flow(代表了optical flow的平均?), 它提懂了一个extrema tracking的一个很好的初值, 也使得起非常鲁邦.

然后我们决定在前后帧中的两点是不是匹配是用BRIEF的, 因为我们只需要判定粗略的特征点对, 特征匹配是在一个低精度的图上操作的, 一个1/6的图上.

然后我们拟合一个仿射变换\(y= Ax+b\), \(x\)\(y\)表示特征点在之前帧和当前帧的位置. 然后\(A\)\(b\)代表\(2\times2\)的矩阵和2维的translation.
\[ E=\sum_{i}^{N} \rho\left(\left\|\boldsymbol{y}_{i}-\left(A \boldsymbol{x}_{i}+\boldsymbol{b}\right)\right\|_{2}\right) \]
用一个2d仿射model点在图像上的移动.

这里\(N\)是所有的匹配, 而\(\rho\)表示M-estimation的核函数.
\[ \rho(x)=\frac{x^{2}}{x^{2}+\sigma^{2}} \]
注意VITAMIN-E不用传统的特征点匹配作为核心, 而是只是作先验信息.

2.3 Curvature Extrema Tracking

因为它是基于extrema而不是特征描述子, VITAMIN-E是对于由于噪声/光照变化有抗噪性的.

根据\(A\)\(b\)的dominant flow, 我们先预测点\(x_{t_0}\)的当前位置\[\overline{\boldsymbol{x}}_{t_{1}}\]
\[ \overline{\boldsymbol{x}}_{t_{1}}=A \boldsymbol{x}_{t_{0}}+\boldsymbol{b} \]
然后, 预测\[\overline{\boldsymbol{x}}_{t_{1}}\]会被修正到\[\boldsymbol{x}_{t_{1}}\], 通过下述的方程:
\[ F=\kappa\left(\boldsymbol{x}_{t_{1}}, t_{1}\right)+\lambda w\left(\left\|\boldsymbol{x}_{t_{1}}-\overline{\boldsymbol{x}}_{t_{1}}\right\|_{2}\right) \]
这里\(\kappa\)代表每个像素的curvature, 然后\[w(x)=1-\rho(x)\]是一个evaluation function, 然后\(\lambda\)表示预测的权重.

maximization是用hill climbing method在邻近的8个像素取得的. \(w\)会防止这个过程会坠入另一个错误的extrema.

注意在录像里极值太多了, dominant flow的预测还是很给力.

3. Bundle Adjustment for Dense Tracking

3.1 Bundle Adjustment

\[ E=\sum_{i}^{N} \sum_{j}^{M} \rho\left(\left\|\boldsymbol{u}_{i j}-\phi\left(R_{j}^{T}\left(\boldsymbol{p}_{i}-\boldsymbol{t}_{j}\right)\right)\right\|_{2}\right) \]

这里\(N\)是特征点数,而\(M\)表示相机位姿数.

然后就是高斯牛顿:
\[ H \delta \boldsymbol{x}=-\boldsymbol{g}, \quad \boldsymbol{x}=\boldsymbol{x}+\delta \boldsymbol{x} \]
感觉schur complement要出现了:
\[ H=\left[\begin{array}{cc}{H_{c c}} & {H_{c p}} \\ {H_{c p}^{T}} & {H_{p p}}\end{array}\right], \quad \boldsymbol{g}=\left[\begin{array}{l}{\boldsymbol{g}_{c}} \\ {\boldsymbol{g}_{p}}\end{array}\right] \]

\[ \begin{aligned}\left(H_{c c}-H_{c p} H_{p p}^{-1} H_{c p}^{T}\right) \delta \boldsymbol{x}_{c} &=-\boldsymbol{g}_{c}+H_{c p} H_{p p}^{-1} \boldsymbol{g}_{p} \\ H_{p p} \delta \boldsymbol{x}_{p} &=-\boldsymbol{g}_{p}-H_{c p}^{T} \delta \boldsymbol{x}_{c} \end{aligned} \]

在稠密的extrema跟踪中, \(H\)的size还是太大了.

3.2 Subspace Gauss-Newton Method

.. (回头再补, 目前不是太感兴趣)

4. Dense Reconstruction

有一大堆精准的3D点.

Meshing and Noise Removal: 首先把3D点投影到图像上,然后用Delaunay Triangulation来生成三角meshes. 然后我们用NLTGV最小化来移除mesh上的噪声. NLTGV最小化能够让meshes更加平滑, 然后保持局部的表面的结构. 不像其他的经典的mesh去噪算法, 比如laplacian smoothing.

Mesh Integration in TSDF

5. Experiment Results

我们用EuroC的左视图来测单目SLAM.

在VITAMIN-E中, 我们用P3P RANSAC 初始化相机, 然后三角化特征点. 这个过程都太快了, 所以我们对买一个帧都做, 而不是关键帧.

..

6. Conclusion

我们用了一个单目视觉SLAM方法重建了稠密的geometry. 1564391637693

1564391687356

转载于:https://www.cnblogs.com/tweed/p/11265190.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值