前几天时候看了模型评估相关内容,现来总结复盘一下。
======本文大纲===============
1.什么是模型评估?
2.有哪些常用的模型评估方法?
3.总结
============================
一、什么是模型评估?
当我们为了某个目的做了一个模型,模型给出一个结论时候,我们也会在思考,这个结论是否足够靠谱?比如用模型预测信用卡欺诈,预测小明不会违约,那,事实真的大抵如此吗?我们都不知道,所有还得专门设个“质检员”来检测模型是否靠谱。
通俗点来说,模型评估就是检验模型是否靠谱的一个重要手段。
二、有哪些常用的模型评估方法?
对于线性模型,可以用R方,调整后的R方、MSE、RMSE这些来评估;对于分类模型,比如逻辑回归、SVM,通常情况下,我们会选择用准确率、ROC-AUC、精确率-召回率进行评估。
这里详细说说分类模型的模型评估方法:
- 1)准确率
- 2)ROC-AUC
- 3)精确率-召回率
- 4)F1 score
①精确率是最简单的指标,直