机器学习模型预测值的置信区间_机器学习中的模型评估复盘

本文概述了模型评估的重要性,介绍了线性模型和分类模型的评估方法,如R方、MSE、准确率、ROC-AUC、精确率-召回率和F1分数。特别讨论了在样本不平衡情况下,ROC曲线和PR曲线的应用,并指出PR曲线在寻找小众群体问题上的优势。
摘要由CSDN通过智能技术生成

前几天时候看了模型评估相关内容,现来总结复盘一下。

======本文大纲===============

1.什么是模型评估?

2.有哪些常用的模型评估方法?

3.总结

============================

一、什么是模型评估?

当我们为了某个目的做了一个模型,模型给出一个结论时候,我们也会在思考,这个结论是否足够靠谱?比如用模型预测信用卡欺诈,预测小明不会违约,那,事实真的大抵如此吗?我们都不知道,所有还得专门设个“质检员”来检测模型是否靠谱。

通俗点来说,模型评估就是检验模型是否靠谱的一个重要手段。

二、有哪些常用的模型评估方法?

对于线性模型,可以用R方,调整后的R方、MSE、RMSE这些来评估;对于分类模型,比如逻辑回归、SVM,通常情况下,我们会选择用准确率、ROC-AUC、精确率-召回率进行评估。

这里详细说说分类模型的模型评估方法:

  • 1)准确率
  • 2)ROC-AUC
  • 3)精确率-召回率
  • 4)F1 score

①精确率是最简单的指标,直

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值