轮廓积分
- 柯西积分定理:如果= f f f是解析的,并且路径 g a m m a gamma gamma完全位于 f f f是解析的区域中,则围绕 g a m m a gamma gamma的积分为零: ∮ γ f ( z ) d z = 0 \oint_{\gamma} f(z) \, dz = 0 ∮γf(z)dz=0。
柯西积分定理是复分析中的一个基本定理,它给出了解析函数在简单闭合曲线上的积分为零的结论。它不仅为计算闭合路径上的积分提供了简便方法,而且还是许多复分析中其他重要定理(如柯西积分公式、留数定理等)的基础。通过以下例子,我们可以看到如何应用柯西积分定理来简化积分计算。
柯西积分定理的陈述
假设 f f f是在某个区域 D D D内解析的复变函数, γ \gamma γ是 D D D内的一条简单闭合曲线,且 f f f在 γ \gamma γ内部及其上都是解析的。那么,围绕 γ \gamma γ的积分为零:
∮ γ f ( z ) d z = 0 \oint_{\gamma} f(z) \, dz = 0 ∮γf(z)dz=0
这里, ∮ γ \oint_{\gamma} ∮γ表示沿曲线 γ \gamma γ的闭合路径积分。
定理的证明概要
证明柯西积分定理通常使用以下步骤:
-
利用参数化表示路径:将闭合路径 γ \gamma γ参数化为 z ( t ) z(t) z(t),其中 t t t在某个区间 [ a , b ] [a, b] [a,b]内变化。
-
应用牛顿-莱布尼茨公式:将积分转换为参数 t t t的定积分。
-
利用解析函数的性质:由于 f f f在 γ \gamma γ内部解析,它可以表示为一个幂级数,其系数由函数在 γ \gamma γ内部的值确定。
-
证明积分的消失:通过直接计算或者利用复变函数的积分性质,证明积分结果为零。
举例说明
假设我们有函数 f ( z ) = z 2 f(z) = z^2 f(z)=z2,其解析区域为整个复平面。现在我们选择一个以原点为中心,半径为1的圆 γ \gamma γ作为积分路径,即 γ : ∣ z ∣ = 1 \gamma: |z| = 1 γ:∣z∣=1。
根据柯西积分定理,围绕这个圆的积分应该为零:
∮ γ z 2 d z = 0 \oint_{\gamma} z^2 \, dz = 0 ∮γz2dz=0
我们可以通过直接计算来验证这一点。首先,我们参数化路径 γ \gamma γ:
z ( t ) = e i t , t ∈ [ 0 , 2 π ] z(t) = e^{it}, \quad t \in [0, 2\pi] z(t)=eit,t∈[0,2π]
然后,计算积分:
∮ γ z 2 d z = ∫ 0 2 π ( e i t ) 2 i e i t d t = i ∫ 0 2 π e 3 i t d t \oint_{\gamma} z^2 \, dz = \int_0^{2\pi} (e^{it})^2 i e^{it} \, dt = i \int_0^{2\pi} e^{3it} \, dt ∮γz2dz=∫02π(eit)2ieitdt=i∫02πe3itdt
计算这个积分,我们得到:
i [ e 3 i t 3 i ] 0 2 π = i ( e 6 π i 3 i − e 0 3 i ) = i ( 1 3 i − 1 3 i ) = 0 i \left[ \frac{e^{3it}}{3i} \right]_0^{2\pi} = i \left( \frac{e^{6\pi i}}{3i} - \frac{e^{0}}{3i} \right) = i \left( \frac{1}{3i} - \frac{1}{3i} \right) = 0 i[3ie3it]02π=i(3ie6πi−3ie0)=i(3i1−3i1)=0
因此,积分确实为零,这验证了柯西积分定理。
- 柯西积分公式:对于 f f f解析和 γ \gamma γ简单闭合轮廓、 γ \gamma γ内任何一点的 f f f值由 f ( z 0 ) = 1 2 π i ∮ γ f ( z ) z − z 0 d z f(z_0) = \frac{1}{2\pi i}\oint_{\gamma} \frac{f(z)}{z -z_0}\, dz f(z0)=2πi1∮γz−z0f(z)dz给出。
柯西积分公式是复变函数理论中的一个基本而重要的结果,它描述了解析函数在闭合轮廓内的值与其在轮廓上的值的积分之间的关系。下面我将详细论述柯西积分公式,并通过一个例子来说明其应用。
柯西积分公式的论述
定义与假设
-
解析函数:假设 f ( z ) f(z) f(z)是在某个区域 D D D内解析的函数,这意味着在该区域内 f ( z ) f(z) f(z)不仅有定义,而且可以展开成泰勒级数。
-
简单闭合轮廓: γ \gamma γ是区域 D D D内的一条简单闭合曲线(即不自交,并且连续)。
-
z 0 z_0 z0在 γ \gamma γ内:点 z 0 z_0 z0位于 γ \gamma γ所围成的区域内。
公式表述
柯西积分公式表述如下:
f ( z 0 ) = 1 2 π i ∮ γ f ( z ) z − z 0 d z f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - z_0} \, dz f(z0)=2πi1∮γz−z0f(z)dz
解释
该公式表明,如果我们知道了函数 f ( z ) f(z) f(z)在一个闭合轮廓 γ \gamma γ上的值,那么我们可以通过沿着这个轮廓的积分来计算 f ( z ) f(z) f(z)在轮廓内部任意一点 z 0 z_0 z0的值。
证明(概述)
柯西积分公式的证明通常依赖于以下步骤:
-
利用解析函数的泰勒级数展开。
-
应用格林公式或者Cauchy定理。
-
证明积分的值只与被积函数在轮廓上的值有关,而与路径无关。
由于详细的证明涉及复杂的数学推导,这里只提供一个概述。
例子说明
假设我们有函数 f ( z ) = z 2 f(z) = z^2 f(z)=z2,并且我们想要计算 f ( z ) f(z) f(z)在点 z 0 = 1 + i z_0 = 1 + i z0=1+i处的值,假设 z 0 z_0 z0位于单位圆盘 ∣ z ∣ = 1 |z| = 1 ∣z∣=1内。
根据柯西积分公式,我们有:
f ( 1 + i ) = 1 2 π i ∮ ∣ z ∣ = 1 z 2 z − ( 1 + i ) d z f(1 + i) = \frac{1}{2\pi i} \oint_{|z|=1} \frac{z^2}{z - (1 + i)} \, dz f(1+i)=2πi1∮∣z∣=1z−(1+i)z2dz
为了计算这个积分,我们可以将分母进行部分分式分解:
z 2 z − ( 1 + i ) = A z − ( 1 + i ) + B \frac{z^2}{z - (1 + i)} = \frac{A}{z - (1 + i)} + B z−(1+i)z2=z−(1+i)A+B
通过计算,我们可以得到 A = ( 1 + i ) 2 A = (1 + i)^2 A=(1+i)2和 B = − A B = -A B=−A。
由于 f ( z ) f(z) f(z)是解析的,根据柯西积分定理,积分 ∮ ∣ z ∣ = 1 B d z \oint_{|z|=1} B \, dz ∮∣z∣=1Bdz为零。因此,我们只需要计算 A A A部分的积分。
f ( 1 + i ) = 1 2 π i ∮ ∣ z ∣ = 1 ( 1 + i ) 2 z − ( 1 + i ) d z f(1 + i) = \frac{1}{2\pi i} \oint_{|z|=1} \frac{(1 + i)^2}{z - (1 + i)} \, dz f(1+i)=2πi1∮∣z∣=1z−(1+i)(1+i)2dz
根据留数定理,该积分等于 2 π i 2\pi i 2πi乘以被积函数在 z 0 = 1 + i z_0 = 1 + i z0=1+i处的留数,即:
f ( 1 + i ) = 1 2 π i ⋅ 2 π i ⋅ ( 1 + i ) 2 = ( 1 + i ) 2 f(1 + i) = \frac{1}{2\pi i} \cdot 2\pi i \cdot (1 + i)^2 = (1 + i)^2 f(1+i)=2πi1⋅2πi⋅(1+i)2=(1+i)2
最终计算得:
f ( 1 + i ) = 1 2 + 2 ⋅ 1 ⋅ i + i 2 = 1 + 2 i − 1 = 2 i f(1 + i) = 1^2 + 2 \cdot 1 \cdot i + i^2 = 1 + 2i - 1 = 2i f(1+i)=12+2⋅1⋅i+i2=1+2i−1=2i
所以,函数 f ( z ) = z 2 f(z) = z^2 f(z)=z2在点 z 0 = 1 + i z_0 = 1 + i z0=1+i处的值为 2 i 2i 2i,这与直接计算 f ( 1 + i ) f(1 + i) f(1+i)的结果一致。
柯西积分公式在复变函数理论中有着广泛的应用,它不仅提供了计算函数值的方法,而且在证明其他复变函数理论中的定理时也扮演着关键角色。
- 留数定理:通过对曲线内函数的留数求和来计算积分,尤其是闭合曲线周围的积分: ∮ γ f ( z ) d z = 2 π i ∑ Res ( f , z k ) \oint_{\gamma} f(z) \, dz = 2\pi i \sum \text{Res}(f, z_k) ∮γf(z)dz=2πi∑Res(f,zk)。
留数定理是复变函数论中的一个基本定理,它提供了计算闭合曲线周围复变函数积分的一种方法。下面我将详细论述留数定理,并通过一个具体的例子来说明如何应用留数定理来计算闭合曲线周围的积分。
留数定理的表述
留数定理可以表述如下:
设 f ( z ) f(z) f(z)是除去有限个孤立奇点外在整个复平面上解析的函数, γ \gamma γ是一条正向简单闭合曲线,它包围了 f ( z ) f(z) f(z)的所有奇点。那么, f ( z ) f(z) f(z)沿 γ \gamma γ的积分等于 2 π i 2\pi i 2πi乘以 f ( z ) f(z) f(z)在 γ \gamma γ内部的奇点处的留数之和,即:
∮ γ f ( z ) d z = 2 π i ∑ k = 1 n Res ( f , z k ) \oint_{\gamma} f(z) \, dz = 2\pi i \sum_{k=1}^n \text{Res}(f, z_k) ∮γf(z)dz=2πi∑k=1nRes(f,zk)
其中, z 1 , z 2 , … , z n z_1, z_2, \ldots, z_n z1,z2,…,zn是 f ( z ) f(z) f(z)在 γ \gamma γ内部的孤立奇点, Res ( f , z k ) \text{Res}(f, z_k) Res(f,zk)是 f ( z ) f(z) f(z)在 z k z_k zk处的留数。
留数的计算
留数的计算依赖于奇点的类型。以下是几种常见奇点的留数计算方法:
- 一级极点:如果 f ( z ) f(z) f(z)在 z 0 z_0 z0处有一级极点,那么留数可以通过以下公式计算:
Res ( f , z 0 ) = lim z → z 0 ( z − z 0 ) f ( z ) \text{Res}(f, z_0) = \lim_{z \to z_0} (z - z_0) f(z) Res(f,z0)=limz→z0(z−z0)f(z)
- m级极点:如果 f ( z ) f(z) f(z)在 z 0 z_0 z0处有一个m级极点,那么留数可以通过以下公式计算:
Res ( f , z 0 ) = 1 ( m − 1 ) ! lim z → z 0 d m − 1 d z m − 1 [ ( z − z 0 ) m f ( z ) ] \text{Res}(f, z_0) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \left[ (z - z_0)^m f(z) \right] Res(f,z0)=(m−1)!1limz→z0dzm−1dm−1[(z−z0)mf(z)]
例子
现在,我们通过一个例子来说明留数定理的应用。
计算积分:
∮ C e z z 2 − 1 d z \oint_{C} \frac{e^z}{z^2 - 1} \, dz ∮Cz2−1ezdz
其中, C C C是一条正向闭合曲线,包围了 z = 1 z = 1 z=1和 z = − 1 z = -1 z=−1这两个奇点。
首先,我们确定函数 f ( z ) = e z z 2 − 1 f(z) = \frac{e^z}{z^2 - 1} f(z)=z2−1ez的奇点。显然, z = 1 z = 1 z=1和 z = − 1 z = -1 z=−1是 f ( z ) f(z) f(z)的一级极点。
接下来,我们分别计算这两个极点的留数。
- 计算 z = 1 z = 1 z=1处的留数:
Res ( f , 1 ) = lim z → 1 ( z − 1 ) e z ( z − 1 ) ( z + 1 ) = lim z → 1 e z z + 1 = e 2 \text{Res}(f, 1) = \lim_{z \to 1} (z - 1) \frac{e^z}{(z - 1)(z + 1)} = \lim_{z \to 1} \frac{e^z}{z + 1} = \frac{e}{2} Res(f,1)=limz→1(z−1)(z−1)(z+1)ez=limz→1z+1ez=2e
- 计算 z = − 1 z = -1 z=−1处的留数:
Res ( f , − 1 ) = lim z → − 1 ( z + 1 ) e z ( z − 1 ) ( z + 1 ) = lim z → − 1 e z z − 1 = e − 1 − 2 = − e − 1 2 \text{Res}(f, -1) = \lim_{z \to -1} (z + 1) \frac{e^z}{(z - 1)(z + 1)} = \lim_{z \to -1} \frac{e^z}{z - 1} = \frac{e^{-1}}{-2} = -\frac{e^{-1}}{2} Res(f,−1)=limz→−1(z+1)(z−1)(z+1)ez=limz→−1z−1ez=−2e−1=−2e−1
最后,根据留数定理,我们可以计算积分:
∮ C e z z 2 − 1 d z = 2 π i ( Res ( f , 1 ) + Res ( f , − 1 ) ) = 2 π i ( e 2 − e − 1 2 ) = π i ( e − e − 1 ) \oint_{C} \frac{e^z}{z^2 - 1} \, dz = 2\pi i \left( \text{Res}(f, 1) + \text{Res}(f, -1) \right) = 2\pi i \left( \frac{e}{2} - \frac{e^{-1}}{2} \right) = \pi i (e - e^{-1}) ∮Cz2−1ez