前提
四个物理量的名称:
四个物理量之间的的联系:
1.磁场强度的涡通量是电通量变化率。
2.电通量具有电荷量纲。
3.电荷产生电场强度。
4.电场强度的涡通量是磁通量变化率。
5.磁通量具有磁荷量纲。
6.磁荷产生磁场强度。
两个数学知识
斯托克斯定理:矢量的闭合曲线积分等于闭合曲线内旋度面积分(即闭合曲线内所围涡通量之和)。
高斯定理:矢量的闭合曲面积分等于闭合曲面内散度体积分(即闭合曲面内所围源通量之和)。
电场强度E
现在,有一个电荷
电荷
电荷在电场中受到电场力。
其中
库仑定律
如果有两个点电荷分别带电
库仑力大小
其中,
令
由电场定义式和库仑定律可以轻易得出带电量为
磁场强度H
现在,有一个磁荷
磁荷
磁荷在磁场中受到磁场力
其中
磁库仑定律
如果有两个点磁荷磁单位数值分别为
磁力大小
其中,
令
同上电场的做法,可以求出磁单位为
我们知道,磁荷并不存在。
磁场由电流产生,物质的磁性其实是分子电流的作用,上面各式不过是磁场对于电场的类比。
不过历史上先提出的磁荷理论,导致物理量H占用了名词 “磁场强度(magnetic field intensity)”,真正从电流角度反映磁场的物理量B被称为”磁感应强度(magnetic flux density)“,又称磁通量密度。对应电位移矢量D的另一个名字"电通量密度"
磁感应强度B
现在,有一个电流元
电流元
磁荷在磁场中受到磁场力
其中,
上式的两种常见形式:
安培力:
洛伦兹力:
毕奥-萨伐尔定律
电流元

电流元产生的磁场为:
导线产生的磁场为:
L为电流元积分路径,即导线路径。
磁化强度M和电极化强度 P
产生磁化强度M的原因
由于分子电流等原因。磁介质的微观结构具有磁矩。

是磁场或电场下介质的微观结构发生变化而产生的。
无外磁场时,磁介质微观结构排布杂乱无章,总磁矩为0

有外磁场时,磁介质微观结构排布整齐,总磁矩不为0。

磁介质内,体积微元
磁化强度
其中,
磁感应强度,磁场强度,磁化强度的关系
结论:磁感应强度除以真空磁导率等于磁场总强度。
ps:
全电流并不全指传导电流。
例如永磁体的磁场由分子电流产生,
变化的电场产生的磁场由位移电流产生。
磁化强度M,磁导率μ
本质上,磁场强度是磁化强度的来源。
顺磁质
磁导率可以理解为磁介质导通磁力线的能力,所以磁感应强度等于磁场强度乘上介质磁导率。
安培环路定理
如果了解
安培环路定理:磁场强度的环路积分等于环路所包围的电流。
其中
我们已经了解到,
即成了我们最开始了解的环路定理公式。
产生电极化强度的原因
电介质的微观结构具有电偶极矩。
无外电场时,电介质微观结构排布杂乱无章,总电偶极矩为0。

有外电场时,电介质微观结构排布整齐,总电偶极矩不为0。

电介质内,体积微元
磁化强度
其中,
电通量密度,电场强度,电极化强度的关系
为了更好理解,我们可以先把电位移矢量叫做电通量密度。
如图所示

电偶极矩

电极化强度除以真空介电常数就是反向极化电场 。即
所以:
结论:电通量密度除以真空介电常数等于原电场的电场强度。
电极化强度数值上等于表面电荷面密度
形式上看, 电极化强度的数值就是Gauss面上电荷密度。
这实际上比较容易理解。
取Gauss面上的某一个电荷,这个电荷为电偶极子的一端。
全Gauss面上电荷为
由于介质本身不带电,Gauss面上却有电荷,Gauss面内必有与Gauss面上等量异号的电荷(实际上这些电荷在点电荷附近),这些异号的电荷即为极化电荷q'。
参考本段公式(2)形式可以看出,电极化强度的数值就是Gauss面上电荷密度。
导体的电极化强度
- 设想导体球壳内有一点电荷q。由于电荷感应,球壳内表面带电-q。在球壳作Gauss面,Gauss面内电荷量为0,球壳上电场强度为0。
- 如果按照电介质处理,把感应电荷看作极化电荷。极化电荷与点电荷电荷量等量异号,所以导体上电极化强度P等于电感应强度D。
- 实际上,Gauss面上电荷密度为0,但球壳外表面有电荷,可以等效在Gauss面上。按照此公式
,电场强度为0,电极化强度却不为0。则电极化率为无穷大。
电极化强度P,介电常数ε
电极化强度与电场强度成正比,且方向相同。
极性物质
介质在外加电场时会产生极化电荷而削弱电场,电场乘以相对介电常数即为原电场。
高斯定理
如果了解
高斯定理:闭合曲面的电通量等于闭合曲面所包围自由电荷的电荷量。
其中
我们已经了解到,
即成了我们最开始了解的高斯定理公式。
麦克斯韦方程组
麦克斯韦方程组由以下四个方程组成,分别是:
- 全电流定律
- 法拉第感应定律
- 高斯磁定律
- 高斯定律
下面是积分形式。
下面是微分形式。
全电流定律
全电流定律反映了电流产生磁场这一现象,由安培环路定律推广而得。
积分形式含义:磁场强度
微分形式含义:磁场强度
这与之前的安培环路定律多了一点内容:全电流,包括传导电流和位移电流。
这个传导电流,即
这个位移电流,即
令
位移电流
电通量变化率为什么是电流?
举一个直观的例子。

现在,可能理解起来就比较容易了。接下来开始抽象的理解。
我们知道高斯定理:闭合曲面的电通量等于闭合曲面所包围自由电荷的电荷量。
电荷实质上是一个”源“,它向空间中“发散“本身的性质,这个性质实际上是从电荷发出的一条条矢量线。
如果用一个闭合曲面”包住“一些源,那么曲面上就会通过全部这些源发出的矢量线,并且,在闭合曲面外的源产生的矢量线。穿入又穿出闭合曲面,不影响通量。此时,通量就是闭合曲面内部的源。
我们可以假想源分布在闭合曲面上,把通量假想成源,那么通量密度就是源的面密度。使闭合曲面包围的空间趋近于0,那么通量就变成了源。
现在看一般的非闭合曲面。曲面上通过的矢量线由全部源所影响。但实际上,我们仍然可以假想源分布在曲面上。通量假想成源,通量随时间变化即源随时间变化。
电通量具有电荷量量纲,电通量变化率可以看作电荷的变化率,即电流。
位移电流的本质
位移电流是电场随时间变化,引起电位移矢量随时间变化而产生的等效电流,实际上并没有电荷发生移动。并非真实存在。
法拉第电磁感应定律
法拉第电磁感应定律反映了变化的磁场产生电场这一现象。
积分形式含义:穿过曲面的磁通量
微分形式含义:某点的磁感应强度
中学时我们知道的法拉第电磁感应定律应该是这样。
其中,
先解释一个问题。为什么这个法拉第电磁感应定律有一个负号?
其实这个这个问题我们初中就已经解决了,不过可能当时我们记得是另外一条定律。
楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
这个负号,正是楞次定律所描述内容的表达。
所以,真正的法拉第电磁感应定律应该是这样:
感应电场
1.设想一个闭合回路中间穿过磁场。有一边可以移动。

磁场的方向如图所示,可移动边向右移动,闭合回路内产生逆时针方向的的感应电流。
2.设想一个导体环中间穿过磁场。

磁场的方向如图所示,当磁感应强度变大时,导体环内产生逆时针方向的的感应电流。
以上为感应电动势的两个标准的例子。
感应电动势产生感应电流,而感应电流是实实在在的电流。有电流就意味着存在电荷的移动,这个移动的电荷就是载流子。
分析导体中的一个带有正电荷的载流子。
我们知道,任何物体都要保持匀速直线运动或静止状态,除非有外力迫使它改变运动状态。
实际上,导体电阻不为0,导体中的阻力会使运动的载流子减速直至静止。所以,若不是有外力克服阻力做功,那么不可能保持导体内有电流。
假如闭合回路连接着电池(无体积)会是这样一个过程:正电荷沿导线从正极流向负极,电势降低,电场力克服阻力做功。可以说,此过程,回路中的电流源于电场力。
但是上述例子未连接电池却有电流。如果我们把上述过程克服阻力做功的某个力依然看作是电场力,那么,电荷在某位置受到电场力,意味着此处存在电场。
这个电场就是感应电场。由于载流子在导体环内不断旋转,说明感应电场的电场线是闭合的。
顺便一提,那个连接电池的例子,电池内的过程为:正电荷在电池内从负极流向正极,非静电力克服阻力和电场力做功,电势升高。即使假设电池无体积,整个回路依然是两个过程。电场线并不是闭合的。
实际上,除了感应电场外其他所有的电场线都不是闭合的,所以电场的环路积分除了感应电场以外,其他都等于0。换句话说,所有电场里,只有感应电场的旋度不为0。
所以电场的环路积分就是感应电场的环路积分,即感应电动势。
此方程,就是法拉第电磁感应定律。
p.s.表示电动势应该用大写希腊字母epsilon即Ε表示,为与电场强度E区分,改用小写ε表示。注意区分ε与真空介电常数的表示。
刚才的处理方法是把克服阻力做功的某个力依然看作是电场力,但不能光是“看作”,还要弄明白这个力究竟是什么。
可以从上一段举的两个例子中分析出引起有磁通量变化的原因。
1.动生电场
如例1,磁感应强度不发生变化,但闭合回路的面积发生变化。
回路的面积在变化说明回路正在运动,即发生了切割磁感线。
这个很简单,我们中学就知道,导体切割磁感线产生动生电动势。
导体上的载流子随着导体运动,同时在磁场中受到了洛伦兹力的作用产生的运动,洛伦兹力沿导线方向的分力宏观上使此导体产生电动势。如果导体处在闭合回路上,就会有电流。
所以在例1情况下,克服阻力做功的某个力即洛伦兹力沿导线方向的分力。
2.感生电场
如例2,闭合回路的面积不发生变化,但磁感应强度发生变化。
似乎,磁感应强度随时间变化产生了感应电动势,但是我们还是不知道克服阻力做功的某个力究竟是什么。
当然,这实际上仍然是洛伦兹力的分力。只是解释起来比较复杂。
这并不是理解法拉第电磁感应定律的关键,所以不在此处详细解释。
感应电场的本质
感生电场是一个由洛伦兹力的分力产生的等效电场,实际上并不是电场力的效果。并非真实存在。
高斯磁定律
我们知道磁场是无源场。
积分形式含义:闭合曲面的磁通量等于0。
微分形式含义:空间一点的磁感应强度
根据高斯定理,闭合曲面磁通量应该等于曲面内部包围的磁荷量,因为磁荷不存在,所以等式右边为0。
高斯定理
我们知道电场是有源场。
积分形式含义:闭合曲面的电通量等于曲面包围的电荷量。
微分形式含义:空间一点的电通量密度