linux转录组kegg注释,转录组入门(8):差异基因结果注释

本文介绍了如何在Linux环境下对转录组数据进行差异基因筛选,并使用R包clusterProfiler进行KEGG和GO富集分析,包括GSEA。通过安装和使用相关R包,对小鼠基因数据进行注释,展示了GO和KEGG分析的气泡图、网络图和GSEA结果,为后续研究提供基础。
摘要由CSDN通过智能技术生成

作业要求

我们统一选择p<0.05而且abs(log2FC)大于1的基因为显著差异表达基因集,对这个基因集用R包做KEGG/GO超几何分布检验分析。

然后把表达矩阵和分组信息分别作出cls和gct文件,导入到GSEA软件分析。

来源于生信技能树:http://www.biotrainee.com/forum.php?mod=viewthread&tid=1750#lastpost

实验过程

1.差异基因筛选

我在转录组入门(7):差异基因分析已经完成了差异基因筛选,为了更好的衔接,我将上一步的代码也一并写入,完整流畅一些,最后我们得到的是数据diff_gene_deseq2,包含了差异表达基因。(这里就不在详细注释这些代码,请看上一篇文章)

require(DESeq2)

control1

control2

rep1

rep2

raw_count

raw_count_filt

raw_count_filter

ENSEMBL

row.names(raw_count_filter)

raw_count_filter

condition

countData

colData

dds

head(dds)

dds2

resultsNames(dds2)

res

summary(res)

table(res$padj<0.05)

res

diff_gene_deseq2 1 | log2FoldChange < -1))

2.GO/KEGG分析及GSEA

我们主要用到的就是Y叔的R包:clusterProfiler包,github上有详细的说明,这个包的功能很强大,我小白一个真的是整不明白,大致看了一些,不过还是有学习到很多,下面就开始贴代码。

2.1 安装clusterProfiler

安装clusterProfiler以及依赖的包,因为个人的电脑都是有差别的,所以我也不好说,这样的代码就一定适合你,因为在我参考别人的时候,就是出现了很多问题,没法安装和载入这个包。具体问题还是要具体分析,也不要那么容易放弃,稍微折腾一些,说不定就能解决。

# Bioconductor的包,安装都是一个套路,source一下,bioLite一下,就差不多了。

source("https://bioconductor.org/biocLite.R")

biocLite("clusterProfiler")

library(clusterProfiler)

# DOSE和DO.db这两个包在我安装的时候提示需要安装,才能载入clusterProfiler,所以就直接安装。

# 问题是在我安装的过程中,又提示好多依赖包没法安装,出现了权限的问题,说是目录NOT PERMISSION。

# 所以一气之下,我就直接修改了R包的读写权限,因为个人电脑&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值