3d slicer图像配准_点云配准国内外研究现状

本文概述了点云配准的研究历史,从1992年的ICP算法开始,介绍了一系列改进方法,包括提高鲁棒性、精度和速度的策略。讨论了如基于Point Signature的方法、最小二乘法、遗传算法、4点全等集合(4-PCS)算法等,并提及了深度学习在点云配准中的应用。文章强调了不同方法的优缺点,如配准速度、精度和适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

fdee4c2d29c4d1dd5c93219016f67158.png

国内外学者对点云配准方面作出了不少研究。

关于点云配准

1992年,Besl 和 McKay[1]提出了ICP算法,该算法的核心技术是寻求两幅图像的相关点集的最优变换矩阵,但是该方法容易陷入局部最优解无法收敛。自从ICP算法被提出,学者们提出的改进方法层出不穷,文献[2][3][4][5]提高了算法鲁棒性,文献[6][7]提高了算法精度,文献[8][9][10][11]提高了算法速度。

1997年,C.S.CHus[12]等人提出基于Point Signature的配准方法,该方法表征形状的能力很强,以致于不同对象同一位置的signature差别很大,另外球体与表面的交点不易获取,尤其是当表面被转化为点云或三角形面片时,可能产生误配准。

1998年,J. Tarel[13]利用最小二乘法的原理,采用3L拟合法对两个多边形曲面进行配准,由于该配准方法不需要进行逐点配准,因此运行速度较快,但是想要获得良好的配准结果,必须保证两个模型的初始位置重叠度大于85%。

2002年,Ip C Y[14]根据实体模型的形状分布对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值