国内外学者对点云配准方面作出了不少研究。
关于点云配准
1992年,Besl 和 McKay[1]提出了ICP算法,该算法的核心技术是寻求两幅图像的相关点集的最优变换矩阵,但是该方法容易陷入局部最优解无法收敛。自从ICP算法被提出,学者们提出的改进方法层出不穷,文献[2][3][4][5]提高了算法鲁棒性,文献[6][7]提高了算法精度,文献[8][9][10][11]提高了算法速度。
1997年,C.S.CHus[12]等人提出基于Point Signature的配准方法,该方法表征形状的能力很强,以致于不同对象同一位置的signature差别很大,另外球体与表面的交点不易获取,尤其是当表面被转化为点云或三角形面片时,可能产生误配准。
1998年,J. Tarel[13]利用最小二乘法的原理,采用3L拟合法对两个多边形曲面进行配准,由于该配准方法不需要进行逐点配准,因此运行速度较快,但是想要获得良好的配准结果,必须保证两个模型的初始位置重叠度大于85%。
2002年,Ip C Y[14]根据实体模型的形状分布对