模型预测控制c语言程序_模型预测控制MPC的通俗解释

模型预测控制(MPC)是一种用于复杂系统的控制策略,通过预测未来行为来优化控制效果。本文以骑行100公里为例,解释MPC的三个关键步骤:模型预测、滚动优化和反馈校正。MPC适用于存在延迟和复杂性的高阶系统,通过反复优化控制序列以适应变化。文中还提及MPC在自动驾驶系统路径跟踪中的应用,并提供相关资源供进一步学习。
摘要由CSDN通过智能技术生成
2e93301f53d9666ebb9a9cf69902f75c.png

模型预测控制(Model Predictive Control,MPC)是在满足特定限制条件的前提下,控制过程的一种控制方式。

若是针对简单系统的控制,多半不需要用到复杂的MPC算法,使用PID控制器即可,如下图所示;当系统有较大的响应延迟或是高阶系统时,其控制特性会复杂到超过PID控制器可控制的程度,而MPC的模型恰恰是用来呈现复杂系统的特性。

072ce3b0b01d8c465ba446ef8e4f13e9.png

PID控制器

PID控制介绍:比例、积分、微分

为避免在刚开始学习MPC时,就陷入复杂的理论中,这里用一个骑行的小例子对MPC的基本思想进行解释。

8fd082f678e4eb5da19dc8a6f5e177dd.png

假设我们要求骑行100公里࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值