3.5 向量化实现的解释-深度学习-Stanford吴恩达教授


←上一篇↓↑下一篇→
3.4 多个例子中的向量化回到目录3.6 激活函数

向量化实现的解释 (Explanation for Vectorized Implementation)

在上一个视频中,我们学习到如何将多个训练样本横向堆叠成一个矩阵 X X X ,然后就可以推导出神经网络中前向传播(forward propagation)部分的向量化实现。

在这个视频中,我们将会继续了解到,为什么上一节中写下的公式就是将多个样本向量化的正确实现。

我们先手动对几个样本计算一下前向传播,看看有什么规律: 公式3.16:

z [ 1 ] ( 1 ) = W [ 1 ] x ( 1 ) + b [ 1 ] z [ 1 ] ( 2 ) = W [ 1 ] x ( 2 ) + b [ 1 ] z [ 1 ] ( 3 ) = W [ 1 ] x ( 3 ) + b [ 1 ] z^{[1](1)}=W^{[1]}x^{(1)}+b^{[1]}\\ z^{[1](2)}=W^{[1]}x^{(2)}+b^{[1]}\\ z^{[1](3)}=W^{[1]}x^{(3)}+b^{[1]}\\ z[1](1)=W[1]x(1)+b[1]z[1](2)=W[1]x(2)+b[1]z[1](3)=W[1]x(3)+b[1]

这里,为了描述的简便,我们先忽略掉 b [ 1 ] b^{[1]} b[1] 后面你将会看到利用Python 的广播机制,可以很容易的将 b [ 1 ] b^{[1]} b[1] 加进来。

现在 W [ 1 ] W^{[1]} W[1] 是一个矩阵, x ( 1 ) , x ( 2 ) , x ( 3 ) x^{(1)},x^{(2)},x^{(3)} x(1),x(2),x(3) 都是列向量,矩阵乘以列向量得到列向量,下面将它们用图形直观的表示出来: 公式3.17:

W [ 1 ] x = [ ⋯ ⋯ ⋯ ] [ ⋮ ⋮ ⋮ ⋮ x ( 1 ) x ( 2 ) x ( 3 ) ⋮ ⋮ ⋮ ⋮ ⋮ ] = [ ⋮ ⋮ ⋮ ⋮ w ( 1 ) x ( 1 ) w ( 1 ) x ( 2 ) w ( 1 ) x ( 3 ) ⋮ ⋮ ⋮ ⋮ ⋮ ] = [ ⋮ ⋮ ⋮ ⋮ z [ 1 ] ( 1 ) z [ 1 ] ( 2 ) z [ 1 ] ( 3 ) ⋮ ⋮ ⋮ ⋮ ⋮ ] = Z [ 1 ] W^{[1]}x= \left[\begin{matrix} \cdots\\ \cdots\\ \cdots\\ \end{matrix}\right] \left[\begin{matrix} \vdots & \vdots & \vdots & \vdots\\ x^{(1)} & x^{(2)} & x^{(3)} & \vdots\\ \vdots & \vdots & \vdots & \vdots\\ \end{matrix}\right]= \left[\begin{matrix} \vdots & \vdots & \vdots & \vdots\\ w^{(1)}x^{(1)} & w^{(1)}x^{(2)} & w^{(1)}x^{(3)} & \vdots\\ \vdots & \vdots & \vdots & \vdots\\ \end{matrix}\right]=\\ \left[\begin{matrix} \vdots & \vdots & \vdots & \vdots\\ z^{[1](1)} & z^{[1](2)} & z^{[1](3)} & \vdots\\ \vdots & \vdots & \vdots & \vdots\\ \end{matrix}\right] = Z^{[1]} W[1]x=x(1)x(2)x(3)=w(1)x(1)w(1)x(2)w(1)x(3)=z[1](1)z[1](2)z[1](3)=Z[1]

视频中,吴恩达老师很细心的用不同的颜色表示不同的样本向量,及其对应的输出。所以从图中可以看出,当加入更多样本时,只需向矩阵 X X X 中加入更多列。

所以从这里我们也可以了解到,为什么之前我们对单个样本的计算要写成 z [ 1 ] ( i ) = W [ 1 ] x ( i ) + b [ 1 ] z^{[1](i)}=W^{[1]}x^{(i)}+b^{[1]} z[1](i)=W[1]x(i)+b[1] 这种形式,因为当有不同的训练样本时,将它们堆到矩阵 X X X 的各列中,那么它们的输出也就会相应的堆叠到矩阵 Z [ 1 ] Z^{[1]} Z[1] 的各列中。现在我们就可以直接计算矩阵 Z [ 1 ] Z^{[1]} Z[1] 加上 b [ 1 ] b^{[1]} b[1] ,因为列向量 b [ 1 ] b^{[1]} b[1] 和矩阵 Z [ 1 ] Z^{[1]} Z[1] 的列向量有着相同的尺寸,而Python的广播机制对于这种矩阵与向量直接相加的处理方式是,将向量与矩阵的每一列相加。 所以这一节只是说明了为什么公式 Z [ 1 ] = W [ 1 ] X + b [ 1 ] Z^{[1]}=W^{[1]}X+b^{[1]} Z[1]=W[1]X+b[1] 是前向传播的第一步计算的正确向量化实现,但事实证明,类似的分析可以发现,前向传播的其它步也可以使用非常相似的逻辑,即如果将输入按列向量横向堆叠进矩阵,那么通过公式计算之后,也能得到成列堆叠的输出。

最后,对这一段视频的内容做一个总结:

由公式3.12、公式3.13、公式3.14、公式3.15可以看出,使用向量化的方法,可以不需要显示循环,而直接通过矩阵 X X X 运算从就可以计算出 A [ 1 ] A^{[1]} A[1] ,实际上 X X X 可以记为 A [ 0 ] A^{[0]} A[0] ,使用同样的方法就可以由神经网络中的每一层的输入 A [ i − 1 ] A^{[i-1]} A[i1] 计算输出 A [ i ] A^{[i]} A[i] 。其实这些方程有一定对称性,其中第一个方程也可以写成 Z [ 1 ] = W [ 1 ] A [ 0 ] + b [ 1 ] Z^{[1]}=W^{[1]}A^{[0]}+b^{[1]} Z[1]=W[1]A[0]+b[1] ,你看这对方程,还有这对方程形式其实很类似,只不过这里所有指标加了1。所以这样就显示出神经网络的不同层次,你知道大概每一步做的都是一样的,或者只不过同样的计算不断重复而已。这里我们有一个双层神经网络,我们在下周视频里会讲深得多的神经网络,你看到随着网络的深度变大,基本上也还是重复这两步运算,只不过是比这里你看到的重复次数更多。在下周的视频中将会讲解更深层次的神经网络,随着层数的加深,基本上也还是重复同样的运算。

以上就是对神经网络向量化实现的正确性的解释,到目前为止,我们仅使用sigmoid函数作为激活函数,事实上这并非最好的选择,在下一个视频中,将会继续深入的讲解如何使用更多不同种类的激活函数。

课程板书

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


←上一篇↓↑下一篇→
3.4 多个例子中的向量化回到目录3.6 激活函数

  • 7
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhao-Jichao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值