PyTorch 实现 VAE 变分自编码器 含代码

自编码器

自编码器网络结构图

在这里插入图片描述

线性自编码器代码如下:
import torch
import torchvision
from torch import nn
from torch import optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.utils import save_image
from torchvision.datasets import MNIST
import os

if not os.path.exists('./vae_img'):
    os.mkdir('./vae_img')


def to_img(x):
    x = x.clamp(0, 1)
    x = x.view(x.size(0), 1, 28, 28)
    return x


num_epochs = 100
batch_size = 128
learning_rate = 1e-3

img_transform = transforms.Compose([
    transforms.ToTensor()
    # transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

dataset = MNIST('../data', transform=img_transform, download=True)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)


class VAE(nn.Module):
    def __init__(self):
        super(VAE, self).__init__()

        self.fc1 = nn.Linear(784, 400)
        self.fc21 = nn.Linear(400, 20)
        self.fc22 = nn.Linear(400, 20)
        self.fc3 = nn.Linear(20, 400)
        self.fc4 = nn.Linear(400, 784)

    def encode(self, x):
        h1 = F.relu(self.fc1(x))
        return self.fc21(h1), self.fc22(h1)

    def reparametrize(self, mu, logvar):
        std = logvar.mul(0.5).exp_()
        if torch.cuda.is_available():
            eps = torch.cuda.FloatTensor(std.size()).normal_()
        else:
            eps = torch.FloatTensor(std.size()).normal_()
        eps = Variable(eps)
        return eps.mul(std).add_(mu)

    def decode(self, z):
        h3 = F.relu(self.fc3(z))
        # return F.sigmoid(self.fc4(h3))
        return torch.sigmoid(self.fc4(h3))

    def forward(self, x):
        mu, logvar = self.encode(x)
        z = self.reparametrize(mu, logvar)
        return self.decode(z), mu, logvar


model = VAE()
if torch.cuda.is_available():
    # model.cuda()
    print('cuda is OK!')
    model = model.to('cuda')
else:
    print('cuda is NO!')

reconstruction_function = nn.MSELoss(size_average=False)
# reconstruction_function = nn.MSELoss(reduction=sum)


def loss_function(recon_x, x, mu, logvar):
    """
    recon_x: generating images
    x: origin images
    mu: latent mean
    logvar: latent log variance
    """
    BCE = reconstruction_function(recon_x, x)  # mse loss
    # loss = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
    KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
    KLD = torch.sum(KLD_element).mul_(-0.5)
    # KL divergence
    return BCE + KLD


optimizer = optim.Adam(model.parameters(), lr=1e-3)

for epoch in range(num_epochs):
    model.train()
    train_loss = 0
    for batch_idx, data in enumerate(dataloader):
        img, _ = data
        img = img.view(img.size(0), -1)
        img = Variable(img)
        if torch.cuda.is_available():
            img = img.cuda()
        optimizer.zero_grad()
        recon_batch, mu, logvar = model(img)
        loss = loss_function(recon_batch, img, mu, logvar)
        loss.backward()
        # train_loss += loss.data[0]
        train_loss += loss.item()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch,
                batch_idx * len(img),
                len(dataloader.dataset), 100. * batch_idx / len(dataloader),
                # loss.data[0] / len(img)))
                loss.item() / len(img)))

    print('====> Epoch: {} Average loss: {:.4f}'.format(
        epoch, train_loss / len(dataloader.dataset)))
    if epoch % 10 == 0:
        save = to_img(recon_batch.cpu().data)
        save_image(save, './vae_img/image_{}.png'.format(epoch))

torch.save(model.state_dict(), './vae.pth')
卷积自编码器代码如下:
import os
import datetime

import torch
import torchvision
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.utils import save_image
from torchvision.datasets import MNIST


if not os.path.exists('./dc_img'):
    os.mkdir('./dc_img')


def to_img(x):
    x = 0.5 * (x + 1)
    x = x.clamp(0, 1)
    x = x.view(x.size(0), 1, 28, 28)
    return x


num_epochs = 100
batch_size = 128
learning_rate = 1e-3

img_transform = transforms.Compose([
    transforms.ToTensor(),
    # transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    transforms.Normalize([0.5], [0.5])
])

dataset = MNIST('./data', transform=img_transform)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)


class autoencoder(nn.Module):
    def __init__(self):
        super(autoencoder, self).__init__()
        self.encoder = nn.Sequential(
            nn.Conv2d(1, 16, 3, stride=3, padding=1),  # b, 16, 10, 10
            nn.ReLU(True),
            nn.MaxPool2d(2, stride=2),  # b, 16, 5, 5
            nn.Conv2d(16, 8, 3, stride=2, padding=1),  # b, 8, 3, 3
            nn.ReLU(True),
            nn.MaxPool2d(2, stride=1)  # b, 8, 2, 2
        )
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(8, 16, 3, stride=2),  # b, 16, 5, 5
            nn.ReLU(True),
            nn.ConvTranspose2d(16, 8, 5, stride=3, padding=1),  # b, 8, 15, 15
            nn.ReLU(True),
            nn.ConvTranspose2d(8, 1, 2, stride=2, padding=1),  # b, 1, 28, 28
            nn.Tanh()
        )

    def forward(self, x):
        x = self.encoder(x)
        x = self.decoder(x)
        return x


model = autoencoder().cuda()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate,weight_decay=1e-5)
starttime = datetime.datetime.now()

for epoch in range(num_epochs):
    for data in dataloader:
        img, label = data
        img = Variable(img).cuda()
        # ===================forward=====================
        output = model(img)
        loss = criterion(output, img)
        # ===================backward====================
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    # ===================log========================
    endtime = datetime.datetime.now()
    print('epoch [{}/{}], loss:{:.4f}, time:{:.2f}s'.format(epoch+1, num_epochs, loss.item(), (endtime-starttime).seconds))
    
    # if epoch % 10 == 0:
    pic = to_img(output.cpu().data)
    save_image(pic, './dc_img/image_{}.png'.format(epoch))

torch.save(model.state_dict(), './conv_autoencoder.pth')

变分自编码器

变分自编码器网络结构图

在这里插入图片描述

变分自编码器代码如下:
import torch
import torchvision
from torch import nn
from torch import optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.utils import save_image
from torchvision.datasets import MNIST
import os
import datetime

if not os.path.exists('./vae_img'):
    os.mkdir('./vae_img')


def to_img(x):
    x = x.clamp(0, 1)
    x = x.view(x.size(0), 1, 28, 28)
    return x


num_epochs = 100
batch_size = 128
learning_rate = 1e-3

img_transform = transforms.Compose([
    transforms.ToTensor()
    # transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

dataset = MNIST('./data', transform=img_transform, download=True)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

class VAE(nn.Module):
    def __init__(self):
        super(VAE, self).__init__()
        self.fc1 = nn.Linear(784, 400)
        self.fc21 = nn.Linear(400, 20)
        self.fc22 = nn.Linear(400, 20)
        self.fc3 = nn.Linear(20, 400)
        self.fc4 = nn.Linear(400, 784)

    def encode(self, x):
        h1 = F.relu(self.fc1(x))
        return self.fc21(h1), self.fc22(h1)

    def reparametrize(self, mu, logvar):
        std = logvar.mul(0.5).exp_()
        if torch.cuda.is_available():
            eps = torch.cuda.FloatTensor(std.size()).normal_()
        else:
            eps = torch.FloatTensor(std.size()).normal_()
        eps = Variable(eps)
        return eps.mul(std).add_(mu)

    def decode(self, z):
        h3 = F.relu(self.fc3(z))
        # return F.sigmoid(self.fc4(h3))
        return torch.sigmoid(self.fc4(h3))

    def forward(self, x):
        mu, logvar = self.encode(x)
        z = self.reparametrize(mu, logvar)
        return self.decode(z), mu, logvar


strattime = datetime.datetime.now()
model = VAE()
if torch.cuda.is_available():
    # model.cuda()
    print('cuda is OK!')
    model = model.to('cuda')
else:
    print('cuda is NO!')

reconstruction_function = nn.MSELoss(size_average=False)
# reconstruction_function = nn.MSELoss(reduction=sum)


def loss_function(recon_x, x, mu, logvar):
    """
    recon_x: generating images
    x: origin images
    mu: latent mean
    logvar: latent log variance
    """
    BCE = reconstruction_function(recon_x, x)  # mse loss
    # loss = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
    KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
    KLD = torch.sum(KLD_element).mul_(-0.5)
    # KL divergence
    return BCE + KLD


optimizer = optim.Adam(model.parameters(), lr=1e-3)

for epoch in range(num_epochs):
    model.train()
    train_loss = 0
    for batch_idx, data in enumerate(dataloader):
        img, _ = data
        img = img.view(img.size(0), -1)
        img = Variable(img)
        img = (img.cuda() if torch.cuda.is_available() else img)
        optimizer.zero_grad()
        recon_batch, mu, logvar = model(img)
        loss = loss_function(recon_batch, img, mu, logvar)
        loss.backward()
        # train_loss += loss.data[0]
        train_loss += loss.item()
        optimizer.step()
        if batch_idx % 100 == 0:
            endtime = datetime.datetime.now()
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f} time:{:.2f}s'.format(
                epoch,
                batch_idx * len(img),
                len(dataloader.dataset), 
                100. * batch_idx / len(dataloader),
                loss.item() / len(img), 
                (endtime-strattime).seconds))
    print('====> Epoch: {} Average loss: {:.4f}'.format(
        epoch, train_loss / len(dataloader.dataset)))
    if epoch % 10 == 0:
        save = to_img(recon_batch.cpu().data)
        save_image(save, './vae_img/image_{}.png'.format(epoch))

torch.save(model.state_dict(), './vae.pth')

Ref

  1. 花式解释AutoEncoder与VAE
  2. 变分自编码器VAE:原来是这么一回事 | 附开源代码
  3. https://github.com/L1aoXingyu/pytorch-beginner/tree/master/08-AutoEncoder
  • 17
    点赞
  • 126
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 11
    评论
以下是使用PyTorch实现变分自动编码器的步骤: 1.导入所需的库和模块,包括torch、torch.nn、torch.nn.functional、torchvision等。 2.定义设备配置,判断是否有可用的GPU,如果有则使用GPU,否则使用CPU。 3.定义变分自动编码器的编码器和解码器。编码器由两个全连接层和一个输出层组成,解码器由一个全连接层和一个输出层组成。 4.定义变分自动编码器的前向传播函数forward(),其中包括编码器和解码器的前向传播过程。 5.定义变分自动编码器的损失函数,包括重构误差和KL散度。 6.定义优化器,使用Adam优化器。 7.训练模型,包括前向传播、计算损失、反向传播和优化器更新参数。 8.保存模型和生成样本图片。 下面是完整的代码实现: ```python import os import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import transforms from torchvision.utils import save_image import matplotlib.pyplot as plt # 设备配置 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 定义变分自动编码器的编码器和解码器 class VAE(nn.Module): def __init__(self): super(VAE, self).__init__() self.fc1 = nn.Linear(784, 400) self.fc21 = nn.Linear(400, 20) self.fc22 = nn.Linear(400, 20) self.fc3 = nn.Linear(20, 400) self.fc4 = nn.Linear(400, 784) def encode(self, x): h1 = F.relu(self.fc1(x)) return self.fc21(h1), self.fc22(h1) def reparameterize(self, mu, logvar): std = torch.exp(0.5*logvar) eps = torch.randn_like(std) return mu + eps*std def decode(self, z): h3 = F.relu(self.fc3(z)) return torch.sigmoid(self.fc4(h3)) def forward(self, x): mu, logvar = self.encode(x.view(-1, 784)) z = self.reparameterize(mu, logvar) return self.decode(z), mu, logvar # 定义变分自动编码器的损失函数 def loss_function(recon_x, x, mu, logvar): BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum') KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) return BCE + KLD # 定义优化器 vae = VAE().to(device) optimizer = torch.optim.Adam(vae.parameters(), lr=1e-3) # 训练模型 def train(epoch): vae.train() train_loss = 0 for batch_idx, (data, _) in enumerate(train_loader): data = data.to(device) optimizer.zero_grad() recon_batch, mu, logvar = vae(data) loss = loss_function(recon_batch, data, mu, logvar) loss.backward() train_loss += loss.item() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item() / len(data))) print('====> Epoch: {} Average loss: {:.4f}'.format( epoch, train_loss / len(train_loader.dataset))) # 保存模型和生成样本图片 if not os.path.exists('./vae_samples'): os.mkdir('./vae_samples') def save_samples(epoch): with torch.no_grad(): sample = torch.randn(64, 20).to(device) sample = vae.decode(sample).cpu() save_image(sample.view(64, 1, 28, 28), './vae_samples/sample_' + str(epoch) + '.png') # 加载MNIST数据集 batch_size = 128 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transform, download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) # 训练模型并保存样本图片 for epoch in range(1, 21): train(epoch) save_samples(epoch) ```
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhao-Jichao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值