[ros][cv][math] 矩阵的变换+齐次坐标
文章目录
0. 写在最前
这篇博客主要参考了(章节:参考链接1)中的内容,可以看作是以其为主体,并添加了其他的参考链接内容为补充的知识点整理,总结。文章内容可能包含对参考内容的文字引用,图片截取,侵删!
注:矩阵的点乘符号在公式中省略了,这是不对的,不过改不了了,谨此提示。
1. 矩阵线性变换:缩放、对称、错切、旋转
1. 缩放变换(scale)
2. 对称变换(mirror)
3. 错切变换(shear)
4. 旋转变换(rotate)
5. 总结:线性变换(linear transformation)
线性变换都可以写成矩阵的形式,其变换矩阵的维度与坐标维度相同
2. 矩阵非线性变换:平移,齐次坐标
1. 平移变换(translate)
关于齐次坐标概念,维基百科的齐次坐标简介中解释的很详细。
2. 补充
-
以二维空间为例, ( a , b ) (a, b) (a,b)这样的表示既可以表示是一个坐标,也可以表示一个向量。假设这个坐标系 x O y xOy xOy 中两个基向量为 x ⃗ , y ⃗ \vec{x}, \vec{y} x,y,坐标原点为o,则其中
- 表示向量 v ⃗ \vec{v} v 时,代表 v ⃗ = a x ⃗ + b y ⃗ \vec{v} = a\vec{x} + b\vec{y} v=ax+by
- 表示一个点 p p p 时,代表 p o = a x ⃗ + b y ⃗ p_o = a\vec{x} + b\vec{y} po=ax+by
如果没有附加说明,我们不能区别 ( a , b ) (a, b) (a,b)表示的是向量还是点。用三个量来表示的化,我们可以明确的区分向量和点:
- 齐次点 ( a , b , 1 ) (a, b, 1) (a,b,1),不一定是1,可以是任何非零数
- 齐次向量 ( a , b , 0 ) (a, b, 0) (a,b,0)
齐次坐标可以更好体现向量和点的位置。
-
向量:
- 有大小,方向
- 具有平移不变性
-
向量与点
-
在齐次坐标系中
2 D 点的表示: [ x y 1 ] , w 可以是任一非零数 2D\text{点的表示:}\left[ \begin{array}{c} x\\ y\\ 1\\ \end{array} \right] \text{,}w\text{可以是任一非零数} 2D点的表示:⎣⎡xy1⎦⎤,w可以是任一非零数2 D 向量表示: [ x y 0 ] \\ 2D\text{向量表示:}\left[ \begin{array}{c} x\\ y\\ 0\\ \end{array} \right] 2D向量表示:⎣⎡xy0⎦⎤
-
两个向量相加,结果为一个向量
v ⃗ a + v ⃗ b = v ⃗ c 0 + 0 = 0 \\ \vec{v}_a+\vec{v}_b=\vec{v}_c \\ 0+0=0 va+vb=vc0+0=0 -
两个点相减,结果为一个向量
p a − p b = p c 1 − 1 = 0 \\ p_a-p_b=p_c \\ 1-1=0 pa−pb=pc1−1=0 -
两个向量相加(点沿着向量方向移动)结果为一个点
p a + v ⃗ = p b 1 + 0 = 1 \\ p_a+\vec{v}=p_b \\ 1+0=1 pa+v=pb1+0=1 -
两个点相加,结果仍为一个点,且表示这两个点的中心点
p a + p b = p m i d 1 + 1 = 2 [ x m i d y m i d 2 ] ⇔ [ x a + x b 2 y a + y b 2 1 ] \\ p_a+p_b=p_{mid} \\ 1+1=2 \\ \left[ \begin{array}{c} x_{mid}\\ y_{mid}\\ 2\\ \end{array} \right] \Leftrightarrow \left[ \begin{array}{c} \frac{x_a+x_b}{2}\\ \frac{y_a+y_b}{2}\\ 1\\ \end{array} \right] pa+pb=pmid1+1=2⎣⎡xmidymid2⎦⎤⇔⎣⎡2xa+xb2ya+yb1⎦⎤
-
3. 使用齐次坐标的变换矩阵
仿射变换:
仿射变换(Affine transformation),又称仿射映射,是指在几何中,对一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。
4. 矩阵逆变换、复合变换
-
逆变换
-
复合变换
&&_参考
链接:CG06-2D变换和齐次坐标(哔哩哔哩)
链接:二维图形的坐标变换矩阵推导及齐次坐标的深入理解(哔哩哔哩)
链接:线性代数之矩阵的属性和运算
链接:直线的参数方程
链接:Homogeneous Coordinates
链接:理解齐次坐标