SLAM
学习SLAM的路痴
这个作者很懒,什么都没留下…
展开
-
四元数与欧拉角(RPY角)的相互转换
https://www.cnblogs.com/21207-iHome/p/6894128.html原创 2020-04-16 22:04:22 · 528 阅读 · 0 评论 -
定点控制链接
https://blog.csdn.net/qq_33168256/article/details/82950222原创 2020-03-23 11:45:00 · 211 阅读 · 0 评论 -
滑膜控制
滑膜控制最强解析:https://zhuanlan.zhihu.com/p/78549442PID与滑膜个人看法仅供参考,pid和滑模都是用来设计控制器的方法,两者都可以让系统保持稳定,但设计思想不一样,无太大关联。因为不需要系统模型,pid在工程应用广泛,缺点调参比较麻烦。由于滑模方法的设计必须基于系统的数学模型,而系统的建的数学模型与真实系统的物理特性往往存在误差,常常导致滑模设计的控...原创 2020-03-23 10:29:21 · 3580 阅读 · 0 评论 -
MATLAB-ROS
https://linhuican.gitbooks.io/matlab-ros/3.2%E5%B7%AE%E5%8A%A8%E6%9C%BA%E5%99%A8%E4%BA%BA%E7%9A%84%E8%B7%AF%E5%BE%84%E8%B7%9F%E8%B8%AA.html原创 2020-03-16 11:28:26 · 262 阅读 · 0 评论 -
功能包下载失败解决办法
https://www.bilibili.com/video/av95061714?p=4原创 2020-03-16 10:44:53 · 452 阅读 · 0 评论 -
GAZEBO
https://www.bilibili.com/video/av95061714?p=380:19原创 2020-03-16 10:01:29 · 153 阅读 · 0 评论 -
矩阵分解的应用
求矩阵的左零空间:https://ww2.mathworks.cn/help/matlab/ref/double.svd.html原创 2020-03-10 15:30:28 · 232 阅读 · 0 评论 -
MSCKF
https://github.com/TurtleZhong/msckf_mono原创 2020-03-10 11:10:25 · 419 阅读 · 0 评论 -
IMU资料
https://blog.csdn.net/danmeng8068/article/details/80608863原创 2020-03-09 18:05:55 · 366 阅读 · 1 评论 -
导航
https://www.ncnynl.com/archives/201702/1385.htmlhttps://gaoyichao.com/Xiaotu/?book=ros&title=Turtlebot_%E4%BD%A0%E5%A5%BD原创 2020-03-09 12:43:21 · 143 阅读 · 0 评论 -
Turtlebot3
http://emanual.robotis.com/docs/en/platform/turtlebot3/getting_started/#first-steps-for-using-turtlebot3原创 2020-03-03 21:14:34 · 161 阅读 · 0 评论 -
VIO算法特征提取总结
OKVISHarris角点检测:VINS-MONOORB特征:Oriented-Fast(关键点)+BRIEF(描述子)Oriented-Fast:问题:1. 角点扎堆;2. 特征点数量太多。解决方法:1. 非极大值抑制,领域内保留响应大的点;2. 计算Harris角点响应,筛选出响应大的点。再优化:为了更高效,对于每个像素,直接检测1,5,9,13个像素的亮点。缺点:缺少...原创 2020-02-20 17:55:22 · 1055 阅读 · 0 评论 -
VIO重要细节
OKVIS 代码也是按照 preintegration 的思路将前后帧 IMU 测量值做积分,因为积分会用到 IMU 的 bias,而 bias 是状态量,每次迭代时是变化的。所以,每次迭代时,会根据状态量相对于 bias 的雅可比重新计算预积分值,当 bias 变化太大时,不能再用雅可比近似计算预积分值,这时会根据 IMU 测量值重新积分。沈老师的 VINS 系统也是这个思路。——https:...原创 2020-02-20 15:21:01 · 226 阅读 · 0 评论 -
四元数求导
补充知识:qa⊗qb=R(qb)qa=[sbzb−ybxb−zbsbxbybyb−xbsbzb−xb−yb−zbsb][xayazasa]q_a \otimes q_b = R(q_b)q_a=\left[\begin{array}{cccc}{s_{b}} & {z_{b}} & {-y_{b}} & {x_{b}} \\{-z_{b}} & {s_{b}}...原创 2020-02-19 16:22:58 · 5065 阅读 · 2 评论 -
展望
原创 2020-02-18 22:03:54 · 101 阅读 · 0 评论 -
SLAM/VIO学习总结
https://zhuanlan.zhihu.com/p/34995102原创 2020-02-15 16:34:02 · 220 阅读 · 0 评论 -
有道云笔记
https://note.youdao.com/ynoteshare1/index.html?id=5e98f487c40ef22f90e1177f29271be5&type=note?auto原创 2020-02-14 19:54:49 · 932 阅读 · 0 评论 -
前端
特征匹配后:对极约束(p1t∧Rp2=0p_1t ^\wedge R p_2 = 0p1t∧Rp2=0)求ttt和RRR;(2D-2D)三角测量求解空间点的深度sis_isi,其中iii表示第iii帧图像。原创 2020-02-14 17:55:18 · 122 阅读 · 0 评论 -
后端:滤波和非线性优化
滤波代表:EKF优点:计算资源受限、待估计量比较简单的情况下,EKF为代表的滤波方法比较有效;缺点:它的一个大缺点就是存储量和状态量是平方增长关系,因为存储的是协方差矩阵,因此不适合大型场景。非线性优化代表:图优化以BA为核心的非线性优化,因为稀疏的原因,能够实现实时。...原创 2020-02-14 17:50:03 · 757 阅读 · 0 评论 -
《视觉导航:从状态估计到运动规划》笔记
https://www.bilibili.com/video/av86463861Hessian or Fisher Matrix:作用:用这个矩阵(绿色框)的最大或最小特征值等信息度量状态估计的质量。原创 2020-02-06 20:53:03 · 208 阅读 · 0 评论 -
求职
https://mp.weixin.qq.com/s?__biz=MzI5MTM1MTQwMw==&mid=2247485899&idx=1&sn=7d00729b0c467ff62933c4708615f0c9&chksm=ec10b7cfdb673ed966b285177ef157670ed5f020bd45827ac8dd6b0c945aff0c0f7843e...原创 2020-01-06 09:58:22 · 185 阅读 · 0 评论 -
真实轨迹显示
https://zhuanlan.zhihu.com/p/46286217原创 2020-01-05 16:25:51 · 395 阅读 · 0 评论 -
VINS框架
原创 2020-01-04 19:40:47 · 373 阅读 · 0 评论 -
Intel Realsense t265获取相机参数
rs-sensor-control原创 2019-12-30 16:42:23 · 1755 阅读 · 0 评论 -
VINS-MONO代码总结
feature_tracker_node:img_callback(), 一个线程estimator_node:poccess(), 包括:IMU预积分、初始化和local BAloop.detection()pose_graph(),全局优化原创 2019-12-26 21:15:48 · 165 阅读 · 0 评论 -
本质矩阵、基本矩阵和单应矩阵
EEE为本质矩阵,FFF为基本矩阵。先用八点法求EEE, 后用SVD分解求ttt和RRR。注:纯旋转无法用EEE求解ttt和RRR。特征点共面或者发生纯旋转时,八点法会退化(基础矩阵自由度下降?):此为平面的点法式方程。ppp为像素坐标。...原创 2019-12-25 20:08:27 · 279 阅读 · 0 评论 -
VIO——前端和后端
前端:LKLKLK光流法:利用灰度不变性假设,计算出u0′u'_{0}u0′、u1′u'_{1}u1′:u、v为像素点在x、y轴上的速度。后端:原创 2019-12-23 11:10:11 · 553 阅读 · 0 评论 -
松耦合和紧耦合
原创 2019-12-15 20:10:13 · 2189 阅读 · 0 评论 -
位姿图优化与回环检测
补充一句:位姿图优化在实际中貌似用得不多,一般是闭环检测后得到一个位姿约束再进行位姿图优化吧。不知道还有没有别的地方用到。转自:https://www.zhihu.com/question/291275949...原创 2019-12-13 14:33:39 · 1571 阅读 · 0 评论 -
对极约束、三角化、RANSAC算法(误匹配剔除)
将坐标统一在C0C_0C0坐标系下:原创 2019-12-13 09:09:53 · 1106 阅读 · 0 评论 -
G2O编程
框架:https://mp.weixin.qq.com/s?__biz=MzIxOTczOTM4NA==&mid=2247486858&idx=1&sn=ce458d5eb6b1ad11b065d71899e31a04&chksm=97d7e81da0a0610b1e3e12415b6de1501329920c3074ab5b48e759edbb33d264a73f...原创 2019-12-12 16:28:23 · 177 阅读 · 0 评论 -
q, θ, R之间的转换
说明:q=θ?q = \theta?q=θ?摘自:VINS论文推导及代码解析。重要的内容:摘自:State Estimation for Robot。原创 2019-12-10 09:55:33 · 2021 阅读 · 0 评论 -
四元数
四元数速查手册[https://aipiano.github.io/2019/01/11/%E5%9B%9B%E5%85%83%E6%95%B0%E9%80%9F%E6%9F%A5%E6%89%8B%E5%86%8C/]四元数求导原创 2019-12-08 22:09:25 · 121 阅读 · 0 评论 -
VIO
2.4 VIO的优势VIO(visual-inertial odometry)即视觉惯性里程计,有时也叫视觉惯性系统(VINS,visual-inertial system),是融合相机和IMU数据实现SLAM的算法,根据融合框架的区别又分为紧耦合和松耦合,松耦合中视觉运动估计和惯导运动估计系统是两个独立的模块,将每个模块的输出结果进行融合,而紧耦合则是使用两个传感器的原始数据共同估计一组变量...原创 2019-11-28 22:04:36 · 307 阅读 · 0 评论 -
SLAM十四讲——相机模型
世界坐标、归一化平面、成像平面之间的关系:1、2、原创 2019-11-27 13:14:41 · 431 阅读 · 0 评论 -
SLAM十四讲的一些结论——李群与李代数
叉积与反对称矩阵:x⃗=(x1,x2,x3)\vec{x} = (x_1, x_2,x_3)x=(x1,x2,x3), x ^=[0−x3x2x30−x1−x2x10]x\hat{\ }= \left[ \begin{matrix} 0 & -{{x}_{3}} & {{x}_{2}} \\ {{x}_{3}} & 0 & -{{x}_{1...原创 2019-11-20 22:37:40 · 123 阅读 · 0 评论 -
SLAM后端——滤波与优化对比
滤波与优化:因为基于滤波的理论,滤波器稳度增长太快,这对于需要频繁求逆的EKF(扩展卡尔曼滤波器),PF压力很大。而基于图的SLAM,通常以keyframe(关键帧)为基础,建立多个节点和节点之间的相对变换关系,比如仿射变换矩阵,并不断地进行关键节点的维护,保证图的容量,在保证精度的同时,降低了计算量。摘自:https://www.cnblogs.com/zengcv/p/5994587.ht...原创 2019-11-20 10:44:04 · 6236 阅读 · 0 评论 -
特征点法
视觉slam分为前端和后端,前端也叫视觉里程计(VO),他根据相邻图像信息粗劣估计相机运动。VO根据是否用到特征点分为直接法和特征点法。特征点由关键点和描述子构成,关键点好理解,描述子则为关键点周围的信息。这里介绍其中一种特征点,ORB(Oriented Fast and Rotated BRIEF(Binary Robust Independent Elementary Featrue)):...原创 2019-11-18 21:47:04 · 514 阅读 · 0 评论 -
非线性优化
与滤波方法是两种分支。解决的问题:状态估计问题状态方程:原创 2019-11-15 16:31:41 · 182 阅读 · 0 评论 -
Bayes Filter
推导:参考https://www.cnblogs.com/ycwang16/p/5995702.html用到的重要公式:全概率公式:离散:p(x)=∑yp(x,y)=∑yp(x∣y)p(y)p(x) = \sum\limits_y {p(x,y)}=\sum\limits_y {p(x|y)p(y)}p(x)=y∑p(x,y)=y∑p(x∣y)p(y)连续:p(x)=∫p(x,...原创 2019-12-16 15:55:00 · 293 阅读 · 0 评论