补充知识:
q
a
⊗
q
b
=
R
(
q
b
)
q
a
=
[
s
b
z
b
−
y
b
x
b
−
z
b
s
b
x
b
y
b
y
b
−
x
b
s
b
z
b
−
x
b
−
y
b
−
z
b
s
b
]
[
x
a
y
a
z
a
s
a
]
q_a \otimes q_b = R(q_b)q_a=\left[\begin{array}{cccc} {s_{b}} & {z_{b}} & {-y_{b}} & {x_{b}} \\ {-z_{b}} & {s_{b}} & {x_{b}} & {y_{b}} \\ {y_{b}} & {-x_{b}} & {s_{b}} & {z_{b}} \\ {-x_{b}} & {-y_{b}} & {-z_{b}} & {s_{b}} \end{array}\right]\left[\begin{array}{c} {x_{a}} \\ {y_{a}} \\ {z_{a}} \\ {s_{a}} \end{array}\right]
qa⊗qb=R(qb)qa=⎣⎢⎢⎡sb−zbyb−xbzbsb−xb−yb−ybxbsb−zbxbybzbsb⎦⎥⎥⎤⎣⎢⎢⎡xayazasa⎦⎥⎥⎤
∴
R
(
q
b
)
=
Ω
(
w
)
+
s
I
=
[
−
ω
∧
ω
−
ω
T
0
]
+
s
I
R(q_b)= \Omega(w)+sI=\left[\begin{array}{ll} {-\omega^{\wedge}} & {\omega} \\ {-\omega^{T}} & {0} \end{array}\right]+s I
R(qb)=Ω(w)+sI=[−ω∧−ωTω0]+sI
四元数求导
最新推荐文章于 2024-10-11 19:00:25 发布