论文笔记--Baichuan 2: Open Large-scale Language Models

1. 文章简介

  • 标题:Baichuan 2: Open Large-scale Language Models
  • 作者:Aiyuan Yang et al.
  • 日期:2023
  • 期刊:arxiv preprint

2. 文章概括

   文章提出了百川2开源大模型,在MMLU、GSM8K等benchmarks上超过了现有的开源模型表现,特别地,百川2在医疗、法律等垂域上表现亮眼。百川2模型包括Baichuan 2-7B 和Baichuan 2-13B 和两个不同大小模型,可以供不同需求、不同预算的研究使用,两个模型的区别如下表所示。
百川1VS2

3 文章重点技术

3.1 预训练

3.1.1 预训练数据

  百川2尝试去提高数据的规模和代表性,为此,文章从网页、数据、研究论文、代码等不同来源构建尽可能丰富的预训练数据。下图为百川2的预训练数据分布情况
数据分布

  百川2希望模型可以接收尽可能高质量的数据集,为此,文章构建了高效的聚类和去重系统。如下图所示,百川2的数据处理程序分为:

  • Exact deduplication:完全相同的重复数据剔除
  • Heuristic approach:一些启发式的算法(文章并没有提到具体方法)
  • Sent-wise quality filter:句子级别的质量过滤(maybe 过滤一些广告、tag之类的,然后再对过滤后的句子、段落去重一遍)
  • Sent-wise, paragraph-wise deduplication:句子、段落级别的去重
  • Document deduplication:文档级别的去重
    数据过滤

3.1.2 模型架构

  • 分词器:为了构建一个大小合适且压缩率高的分词器,文章将词表大小从百川1的64000扩充到125695。分词方法为BPE。特别地,为了更好地处理数字,百川2将数字分隔为单个的digit;为了更高地处理代码,百川2在分词器中增加了空格tokens(单个空格、多个空格分别为一个token?)
  • 位置编码:百川2选择采用AliBi编码,该方法相比于RoPE编码方法表现更好。
  • 激活函数:百川2使用SwiGLU作为激活函数。SwiGLU是当下一些LLMs(PALM,LLaMA等)倾向选择的一种激活函数。由于SwiGLU相当于两个线性变换(其中一个加了Swi函数)的乘积,前馈层SwiFFN包含了三个参数矩阵 ( S w i s h ( x W 1 ) × x V ) W 2 (Swish(xW_1)\times xV) W_2 (Swish(xW1)×
### 使用 LLaMA-Factory 对 Baichuan 模型进行微调 为了使用 LLaMA-Factory 对 Baichuan 模型进行微调,需遵循一系列具体操作流程。这不仅涉及加载模型本身,还包括定义训练配置以及执行实际的微调过程。 #### 加载Baichuan模型 首先,要从指定路径加载预训练好的Baichuan模型到所需的设备上(如GPU),可以通过如下Python代码完成: ```python from llama_factory import load_llama_model model = load_llama_model('path_to_baichuan_model', device='cuda') ``` 此部分代码展示了如何利用`load_llama_model`函数来加载位于本地文件系统的Baichuan模型,并将其放置在CUDA设备之上以便加速计算[^1]。 #### 配置训练设置 接着,在准备开始微调之前,应当合理设定训练的各项超参数和其他必要条件。这些配置可能涉及到优化器的选择、学习率调整策略等方面的内容。虽然具体的配置细节未在此处给出,但是通常会创建一个字典对象或者其他形式的数据结构来保存所有的训练选项[^2]。 #### 执行微调过程 最后一步就是基于已有的数据集启动微调程序。假设已经有了适当格式化的输入数据,则可以直接调用相应的API来进行这一阶段的工作。值得注意的是,由于不同应用场景下所需处理的任务差异较大,因此建议参考官方文档或教程获取更详细的指导信息关于如何针对特定任务定制化地应用LLaMA-Factory框架[^3]。 此外,考虑到Baichuan是一个大型语言模型(LLM),其微调工作可能会消耗较多资源并需要较长的时间才能达到理想效果。所以,在实践过程中务必做好充分规划和技术支持保障措施[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值