大语言模型数据流程源码解读(基于llama3模型)


前言

如果只是简单构建训练与推理的大语言模型,还是比较简单,直接使用huggignface调用即可。然而,理解其源码或内部原理是比较麻烦的,尽管我在之前文章给出了很多解释,但我还是想通过数据流走向来解读模型整个流程与源码内部机理。这样,我们可方便更深入的理解大语言模型!


一、数据进入LlamaForCausalLM(LlamaPreTrainedModel)类

数据转成input_ids与attention_mask后该如何转换,我们首先看到原始数据会进入到下面调用方法self.model,其如下图:

在这里插入图片描述

我们知道input_ids与attention_mask是[1,96],是未进行embedding!

二、数据进入LlamaModel(LlamaPreTrainedModel)类

1、input_ids的embedding

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tangjunjun-owen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值