1. 基于BEV空间的自动驾驶感知任务
最近,基于BEV空间下的感知任务已经涌现出了众多优秀算法,并在多个自动驾驶公开数据集(KITTI,Waymo,nuScenes)上取得了非常不错的成绩。根据自动驾驶汽车上安装的传感器类型(视觉传感器:针孔/鱼眼相机传感器、激光雷达传感器、毫米波雷达传感器)对感知算法进行分类的话,可以大致分为以下三个类别:
- 基于纯视觉/图像信息构建BEV空间特征实现自动驾驶感知任务
- 基于纯激光雷达信息构建BEV空间特征实现自动驾驶感知任务
- 基于多种传感器信息融合构建BEV空间特征实现自动驾驶感知任务
在这里,简单总结下不同传感器的优缺点,正是由于各个传感器之间可以取长补短,所以目前的自动驾驶汽车上通常都会配备不同类型的传感器。
激光雷达传感器(Lidar)
激光雷达传感器可以提供物体准确的深度信息以及结构信息
;但激光雷达传感器提供物体信息的距离比较有限
,同时其获得的点云数据与相机传感器采集到的图像信息相比更加稀疏
;
相机传感器(Camera)
相机传感器可以很好的捕捉图像中物体包含的丰富的色彩和纹理信息&#x