相切于球体上定点的平面


1.问题描述

该问题同二维平面上求解过圆上一点的直线问题类似。

2.已知条件

已知球体表面上一点P, 球心C,求球面上P点的切面M。

3.求解

令向量 n = P − C n = P-C n=PC,则 u = ( n y , − n x , 0 ) , v = u × n u=(n_y,-n_x,0),v=u\times n u=(ny,nx,0),v=u×n
平面 M = P + t ⋅ u + m ⋅ v M = P+t\cdot u +m\cdot v M=P+tu+mv

4.Code

close all;
clear;


rng default;

C = rand(1,3);
r = rand();
t = rand(1,2)*pi;
P = C + [r*cos(t(1))*sin(t(2)), r*sin(t(1))*sin(t(2)), r*cos(t(2))];

t = linspace(0, 2*pi, 50);
u = linspace(0, 2*pi, 50);
[t,u] = meshgrid(t,u);

x = C(1) + r*cos(t).*sin(u);
y = C(2) + r*sin(t).*sin(u);
z = C(3) + r*cos(u);

n = normalize(P - C,'norm');
m = [0, n(3), -n(2)];
l = cross(m,n);
c1 = linspace(-1,1,20);
c2 = linspace(-1,1,20);
[c1,c2] = meshgrid(c1,c2);
xx = P(1) + c1*m(1) + c2*l(1);
yy = P(2) + c1*m(2) + c2*l(2);
zz = P(3) + c1*m(3) + c2*l(3);


figure;
mesh(x,y,z);
axis equal
hold on
mesh(xx,yy,zz)
hold on
scatter(P(1),P(2), P(3),'filled')

在这里插入图片描述

在Python中生成随机相切球体涉及到一些数学和图形学的知识。为了实现这一目标,我们需要使用随机数生成、向量操作以及可能的三维图形库,如matplotlib的3D功能或更专业的pythreejs等。以下是一个简单的概念描述: 1. 首先,你需要创建一个球体(Sphere)的几何体。这通常可以通过库中的函数来完成,比如`Sphere(radius)`,其中`radius`是球体的半径。 2. 生成两个随机的位置。每个位置都需要是一个三维坐标,比如`(x, y, z)`,这样它们就代表了两个潜在的球体中心。 3. 计算这两个随机位置之间的距离,确保这个距离大于球体半径之和,以保证它们不会相交。 4. 如果这两个球体的距离小于它们应该保持的距离,就需要调整其中一个位置,让它与另一个球体边缘相切。这可能涉及迭代过程,直到找到合适的切点。 5. 可以使用三维向量和数学公式(如点到点的距离公式)来计算切点。 以下是一个简化的伪代码示例: ```python import numpy as np from math import sqrt from matplotlib.collections import SphereCollection def random_tangent_sphere(radius): # 生成随机中心点 center1 = np.random.uniform(-10, 10, 3) center2 = np.random.uniform(-10, 10, 3) # 确保初始位置不会直接重合 while np.linalg.norm(center1 - center2) <= 2 * radius: center2 = np.random.uniform(-10, 10, 3) # 计算切点 distance = np.linalg.norm(center1 - center2) tangent_distance = radius + radius tangent_direction = (center2 - center1) / distance tangent_point1 = center1 + tangent_direction * tangent_distance # 创建球体 sphere1 = Sphere(radius=radius, center=center1) sphere2 = Sphere(radius=radius, center=tangent_point1) # 显示或返回这两个球体 # ... random_tangent_sphere(5) ``` 请注意,这段代码是理想化的,并未包含所有细节,实际实现可能会更复杂,特别是涉及到图形渲染和动画展示的部分。如果你需要在图形界面中可视化这些球体,可能需要使用专门的库进行展示。如果你对具体实现有疑问,可以提问相关的子问题: 1. 如何使用Python库来创建三维球体? 2. 三维空间中的切点如何计算? 3. 如何在Python中显示或动画化这些相切球体
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值