机器学习面试总结(一)

开始整理和复盘机器 学习或数据挖掘面试中涉及的问题

 ps:整理小米机器学习去年校招

一面
讲项目

特征选择的常用方法

https://blog.csdn.net/SecondLieutenant/article/details/80693765

bagging和boosting的区别
https://www.cnblogs.com/earendil/p/8872001.html

手推逻辑回归
https://blog.csdn.net/u014472643/article/details/80662532

过拟合的解决办法,以及在你的项目中怎么用的
http://www.360doc.com/content/18/0805/10/11935121_775819522.shtml

L1和L2的区别 L1为什么能稀疏矩阵 L2为什么不能,L2为什么能解决过拟合

https://blog.csdn.net/haidixipan/article/details/83186850

gbdt,xgboost模型的比较
https://blog.csdn.net/m0_37870649/article/details/81022040

lstm和Rnn区别
https://blog.csdn.net/lanmengyiyu/article/details/79941486

梯度消失的解决办法
https://blog.csdn.net/qq_25737169/article/details/78847691

手撕代码:链表反转 最大子序列和

1.输入一个链表,输出反转后的链表

#非递归实现:

# -*- coding:utf-8 -*-
# class ListNode:
#     def __init__(self, x):
#         self.val = x
#         self.next = None
class Solution:
    # 返回ListNode
    def ReverseList(self, pHead):
        # write code here
        if pHead is None:
            return pHead
        last = None  #指向上一个节点
        while pHead:
            # 先用tmp保存pHead的下一个节点的信息,
            # 保证单链表不会因为失去pHead节点的next而就此断裂
            tmp = pHead.next
            # 保存完next,就可以让pHead的next指向last了
            pHead.next = last
            # 让last,pHead依次向后移动一个节点,继续下一次的指针反转
            last = pHead
            pHead = tmp
        return last

2.最大子序列和

#O(n*2)解法(最简单粗暴的方式,双层循环,用一个maxsum标识最大连续子序列和。然后每次判断更新)


def maxSum(list):
  maxsum = list[0]
  for i in range(len(list)):
    maxtmp = 0
    for j in range(i,len(list)):
      maxtmp += list[j]
      if maxtmp > maxsum:
        maxsum = maxtmp
  return maxsum




#O(n)解法(动态规划)
''' 
假设数组为a[i],因为最大连续的子序列和必须是在位置0-(n-1)之间的某个位置结束。那么,当循环遍历到第i个位置时,如果其前面的连续子序列和小于等于0,那么以位置i结尾的最大连续子序列和就是第i个位置的值即a[i]。如果其前面的连续子序列和大于0,则以位置i结尾的最大连续子序列和为b[i] = max{ b[i-1]+a[i],a[i]},其中b[i]就是指最大连续子序列的和
  '''

def maxSum(list_of_nums):
  maxsum = 0
  maxtmp = 0
  for i in range(len(list_of_nums)):
    if maxtmp <= 0:
      maxtmp = list_of_nums[i]
    else:
      maxtmp += list_of_nums[i]
 
    if(maxtmp > maxsum):
      maxsum = maxtmp
  return maxsum


智力题:马匹赛跑 25匹马,5个跑道,没有计时器,要找出前三名,最少要比多少场,答案是7

http://www.cnblogs.com/vincently/p/4802592.html

二面
手推gbdt
https://blog.csdn.net/blank_tj/article/details/82262431
手推xgboost
https://blog.csdn.net/u014472643/article/details/80658009

手撕代码 两个有序数组,求其中位数,然后改进时间复杂度

#排序sorted解法(时间复杂度:最坏O(nlog(n)),最优O(n),平均O(nlog(n)))

class Solution:
    def findMedianSortedArrays(self, nums1, nums2):
        """
        :type nums1: List[int]
        :type nums2: List[int]
        :rtype: float
        """
        nums = sorted(nums1+nums2)
        if len(nums)%2 ==0:
            answer = (nums[int(len(nums)/2-1)]+nums[int(len(nums)/2)])/2
        else:
            answer = nums[int((len(nums)+1)/2)-1]
        return answer

用二分查找改进时间复杂度

#二分查找,时间复杂度O(log(n))
class Solution:
    def findMedianSortedArrays(self, nums1, nums2):
        """
        :type nums1: List[int]
        :type nums2: List[int]
        :rtype: float
        """
        m, n = len(nums1), len(nums2)
        if m > n:
            nums1, nums2, m, n = nums2, nums1, n, m
        if n == 0:
            raise ValueError
 
        imin, imax, half_len = 0, m, (m + n + 1) // 2
        while imin <= imax:
            i = (imin + imax) // 2
            j = half_len - i
            if i < m and nums2[j-1] > nums1[i]:
                # i is too small, must increase it
                imin = i + 1
            elif i > 0 and nums1[i-1] > nums2[j]:
                # i is too big, must decrease it
                imax = i - 1
            else:
                # i is perfect
 
                if i == 0: max_of_left = nums2[j-1]
                elif j == 0: max_of_left = nums1[i-1]
                else: max_of_left = max(nums1[i-1], nums2[j-1])
 
                if (m + n) % 2 == 1:
                    return max_of_left
 
                if i == m: min_of_right = nums2[j]
                elif j == n: min_of_right = nums1[i]
                else: min_of_right = min(nums1[i], nums2[j])
 
                return (max_of_left + min_of_right) / 2.0


LR和svm的区别
https://blog.csdn.net/u013385362/article/details/80219531

场景分析题,如何对新闻进行实效性分析,怎么挖特征

lstm.每个门的公式还会写吗?

1.对门的理解
https://blog.csdn.net/shenxiaoming77/article/details/76795376
2.公式推导
https://www.sohu.com/a/159470197_99916544

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值