驱动钛丝(SMA)的可靠性设计(9)钛丝的驱动电路控制(下)

【前言】

形状记忆合金(Shape memory alloy, SMA),也叫形态记忆合金、钛镍记忆合金,它是由Ti(钛)-Ni(镍)材料组成,经过多道工序制成的丝,我们简称钛丝,可以通过电路驱动钛丝发生运动。相比于传统的电机、电磁铁动力,钛丝是一种新型的动力元件。钛丝驱动技术目前已经在航空航天、洲际导弹、无人机、手机、汽车、机器人等科技领域投入使用。

本文通过分享、普及钛丝驱动技术的可靠性设计,方便大家在机械电子工业设计等领域快速有效的转化为科技成果。

9 【钛丝的驱动电路控制(下)】

本节要说的是驱动钛丝电路控制的【驱动保持控制】、【环境温度的补偿设计】、【温度闭环控制设计】、【任意定位驱动控制】、【矩阵式驱动控制】。

在讲解前,我们需要引入软件设计控制中的一个常见的设计应用:PWM驱动,电子工程师和软件工程师都非常熟悉这个驱动模式。

本文中提及的电流参数,均表示PWM驱动时的电流平均值或有效值。

6.【驱动保持控制】

有些产品的功能要求我们的驱动机构在驱动后,还要保持驱动后的状态,此时,需要在我们在上一节提到的恒功驱动电路方案的基础上,进一步做软件设计。

工作原理:

驱动保持控制的两个步骤:

1)恒功驱动,参考《表1钛丝位移形变热功方程模拟计算表》对钛丝通电驱动,让执行机构完成执行动作。

2)驱动保持,根据产品实际的结构空间情况,计算或测量温度的损失,做温度补偿电流控制,使其驱动机构内的钛丝的温度始终维持在100°,波动区间在1

<think>好的,我需要帮助用户了解如何控制控制的柔性塑料管。首先,用户的问题是关于控制方法,所以我要找到相关的技术和方法。根据用户的意图,可能需要涉及不同的控制策略,比如机械控制、气压/液压控制、智能材料应用等。 首先,我应该调用网络搜索工具,查找相关的资料。比如,搜索“驱动柔性塑料管控制方法”、“气动控制柔性塑料管”、“形状记忆合金在柔性管控制中的应用”等关键词。根据搜索结果,可能会找到不同的控制技术,比如机械牵引、流体驱动、智能材料、传感器反馈等。 接下来,需要整合这些信息,按照用户的要求分点说明,每个方法之间换行。同时,要避免使用步骤词汇,所以可能需要用标题或分类的方式来组织内容。例如,分成机械控制、流体驱动、智能材料、闭环控制等部分。 还要注意格式要求,比如数学公式和代码的格式。如果搜索结果中有相关的公式,比如PID控制算法,需要正确使用行内或独立公式的格式。例如,PID的公式应该写成$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$。如果有示例代码,比如Arduino控制气泵的代码,需要用三个反引号包裹,并注明语言类型。 在整合过程中,需要确保引用内容分散在回答中,而不是集中在末尾。每个方法部分可能需要引用不同的来源,比如机械结构设计、流体控制参数、智能材料的响应时间等。 然后,生成相关问题部分。需要基于用户的原始问题和回答内容提出三个相关问题。例如,可能涉及具体应用场景、不同控制方法的优缺点比较、闭环系统的传感器选择等。 最后,检查所有格式要求是否满足,比如没有第一人称,没有步骤词汇,正确使用公式和代码格式,相关问题部分正确标号并放在最后等。</think>针对控制柔性塑料管的控制方法,结合机械结构设计驱动方式和智能算法,可分为以下四种主流技术路径: **机械牵引控制** 采用微型电机或伺服机构驱动金属/尼龙实现形变控制,传动系统需配置滑轮组和张力传感器。典型应用公式为$F = k \cdot \Delta L$,其中F为牵引力,k为弹性系数,ΔL为形变量。临床内窥镜导管多采用该方案,可实现±15°弯曲精度 **流体驱动控制** 气压/液压驱动型柔性管通过内部腔室压力变化产生形变,控制方程满足$P = E \cdot (\frac{\Delta V}{V_0})$。建议工作压力范围0.1-0.3MPa,响应时间<200ms。工业领域常用比例阀调节压力,搭配压力传感器构成闭环系统 **智能材料驱动** 形状记忆合金(SMA)驱动器通过电流控制相变温度,Joule加热公式为$Q = I^2 R t$。典型参数:直径0.3mm镍驱动电流0.8-1.2A,形变率可达8%。需配合温度反馈防止过热 **闭环控制系统** PID控制算法实现精确形变: $u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$ 示例代码实现: ```python class PIDController: def __init__(self, Kp, Ki, Kd): self.Kp = Kp self.Ki = Ki self.Kd = Kd self.integral = 0 self.prev_error = 0 def update(self, error, dt): self.integral += error * dt derivative = (error - self.prev_error) / dt output = self.Kp*error + self.Ki*self.integral + self.Kd*derivative self.prev_error = error return output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值