20行列式应用:克拉默法则、逆矩阵和体积

一、克拉默法则

直接给出二阶矩阵的逆矩阵形式:
[ a b c d ] − 1 = 1 a d − b c [ d − b − c a ] \begin{bmatrix} a&b\\c&d \end{bmatrix}^{-1}=\frac{1}{ad-bc}\begin{bmatrix}d&-b\\-c&a\end{bmatrix} [acbd]1=adbc1[dcba]
观察上式,似乎有以下等式:
A − 1 = 1 ∣ A ∣ C T A^{-1}=\frac{1}{\vert A\vert}C^T A1=A1CT
注: C C C表示代数余子式(cofactor),去掉行列后的带正负号的行列式。对于任意阶矩阵是否有类似的结论? 要证明这个结论,等价于证明:
A C T = ∣ A ∣ I (1) AC^T=\vert A\vert I\tag{1} ACT=AI(1)
展开一下:
[ a 11 ⋯ a 1 n ⋯ ⋯ ⋯ a n 1 ⋯ a n n ] [ c 11 ⋯ c n 1 ⋯ ⋯ ⋯ c n 1 ⋯ c n n ] = [ ∣ A ∣ ⋯ 0 0 ∣ A ∣ 0 0 0 ∣ A ∣ ] \begin{bmatrix} a_{11}&\cdots&a_{1n}\\ \cdots&\cdots&\cdots\\ a_{n1}&\cdots&a_{nn} \end{bmatrix}\begin{bmatrix}c_{11}&\cdots&c_{n1}\\ \cdots&\cdots&\cdots\\ c_{n1}&\cdots&c_{nn}\end{bmatrix}=\begin{bmatrix}\vert A\vert&\cdots&0\\ 0&\vert A\vert&0\\ 0&0&\vert A\vert \end{bmatrix} a11an1a1nann c11cn1cn1cnn = A00A000A
可以看出等式(1)是成立的。这里用到了一个代数余子式的推论:行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和等于零。证明见同济版的教材,简单来说就是某一行的代数余子式按行展开,将原来按行展开的行用其他行替换,因为相同行所以最后的结果应为0。

(1)告诉我们改变某个元素对可逆矩阵的影响。回忆之前讲到的方程组 A x = b Ax=b Ax=b,现在可以写成:
x = A − 1 b = 1 ∣ A ∣ C T b (2) x=A^{-1}b=\frac{1}{\vert A\vert}C^Tb\tag{2} x=A1b=A1CTb(2)
利用行列式的概念可以表达,未知数的实际值,也就是:
x 1 = B 1 ∣ A ∣ x 2 = B 2 ∣ A ∣ ⋯ x n = B n ∣ A ∣ (3) x_1=\frac{B_1}{\vert A\vert}\\ x_2=\frac{B_2}{\vert A\vert}\\ \cdots\\ x_n=\frac{B_n}{\vert A\vert}\tag{3} x1=AB1x2=AB2xn=ABn(3)
其中 B j B_j Bj是用系数替代 A A A中对应的列得到的。不得不说,Grammer 法则给出了一种求唯一解的一种方法,但是看上去计算量非常之大,求行列式 ∣ A ∣ \vert A\vert A,替换之后求未知数个 ∣ B ∣ \vert B\vert B,计算起来简直大的离谱,所以计算机还是采用的消元法而不是此方法(手工算也不会这么算)。

二、行列式的几何意义

以下内容参考了课本。在讲行列式的几何意义之前,复习一下行列式的性质:

  • 性质1:单位矩阵的行列式值为1

  • 性质2:交换行符号相反

  • 性质3:行列式行符合线性运算法则

  • 性质4:两行相等行列式值为0

  • 性质5:某行减去其他行倍数行列式值不变

  • 性质6:有零行行列式值为0

  • 性质7:三角行列式值为对角线乘积

  • 性质8:如果矩阵是奇异的,那么行列式值为0;行列式不为0,矩阵是可逆的

  • 性质9:矩阵乘积的行列式等于其分别行列式后乘积

  • 性质10:矩阵转置行列式值不变

接下来将会从平面和三维空间上对行列式意义进行解释。

2.1 平面行列式

已知平面上的三个点: ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y 2 ) (x_2,y_2) (x2,y2) ( x 3 , y 3 ) (x_3,y_3) (x3,y3),求其围成的三角形面积 S S S:
在这里插入图片描述
没有学习行列式之前,一般的做法是先求出底边大小,再求出高。学习了行列式后,其面积等于坐标值组成的行列式值的一半:
S = d e t e r m i n a t 2 S=\frac{determinat}{2} S=2determinat
也就是:
S = 1 2 ∣ x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 ∣ (4) S=\frac{1}{2}\left |\begin{matrix}x_1&y_1&1\\x_2&y_2&1\\x_3&y_3&1\end{matrix}\right|\tag{4} S=21 x1x2x3y1y2y3111 (4)
如果 x 3 = y 3 = 0 x_3=y_3=0 x3=y3=0,那么还可以继续简化成:
S = 1 2 ∣ x 1 y 1 x 2 y 2 ∣ (5) S=\frac{1}{2}\left |\begin{matrix}x_1&y_1\\x_2&y_2\end{matrix}\right|\tag{5} S=21 x1x2y1y2 (5)

事实上,在平面上行列式值恰好等于平行四边形的面积,要证明(5)等价于证明行列式值等于平行四边形的面积。如果能够证明一个事物完全符合另外一个事物的所有特征,那么我们可以认为概念是等价的。行列式性质1 2 3是对应上的:

  • 假如向量属于单位正交向量,几何上是边长为1的正方向, S = ∣ I ∣ = 1 S=\vert I\vert=1 S=I=1
  • 假如向量进行行交换,符号相反但是行列式绝对值是相同的,几何上不会因为交换边长而导致面积不同;
  • 假如向量某一行变成原来的 t t t倍,边长变长 k k k倍,面积也扩大 k k k倍,这是符合行列式性质3的。

所以认为,行列式值的绝对值和面积是等价的。

2.2 三维空间

在这里插入图片描述

上图是四个向量构成的平行体,检查其是否符合行列式的三个性质:

  • 如果向量是相互正交的,那么体积等于1,行列式也等于1;
  • 如果其中一个向量扩大 n n n倍,整个体积也扩大 n n n倍,行列式也扩大 n n n倍;
  • 如果将向量交换,并不影响体积大小,行列式符号发生改变,但是绝对值大小不变;

符合行列式定义,所以行列式绝对值等于其体积。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
三个例题: 1. 按行展开:$\begin{vmatrix} 1 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & 2 & 1 \end{vmatrix} = 1 \begin{vmatrix} -1 & 2 \\ 2 & 1 \end{vmatrix} - 2 \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix} + 1 \begin{vmatrix} 3 & -1 \\ 4 & 2 \end{vmatrix} = -15$ 2. 按列展开:$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 1 \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 4 \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix} + 7 \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = 0$ 3. 利用性质4:$\begin{vmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{vmatrix} = 2 \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} - 3 \begin{vmatrix} 1 & 3 \\ 3 & 2 \end{vmatrix} + \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} = -23$ 范德蒙德行列式的特点及应用: 范德蒙德行列式为$\begin{vmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{vmatrix}= \prod_{1\leq i<j\leq n}(a_j-a_i)$ 范德蒙德行列式可用于判断$n$个数$a_1,a_2,\cdots,a_n$是否互不相同。当行列式不为0时,即$n$个数互不相同;当行列式为0时,则至少有两个数相同。 应用:在插值问题中,给定$n+1$个点$(x_0,y_0),(x_1,y_1),\cdots,(x_n,y_n)$,要求求出一个$n$次多项式$P(x)$,使得$P(x_i)=y_i$。用拉格朗日插值公式可得多项式$P(x)$的表达式,其中涉及到$n+1$个系数$a_0,a_1,\cdots,a_n$,这$n+1$个系数可以通过解范德蒙德行列式得到。 行列式在解线性方程组方面的应用克拉默法则: 对于线性方程组$Ax=b$,若$A$为$n\times n$的可逆矩阵,则方程组有唯一解$x=A^{-1}b$。克拉默法则给出了用行列式求解$x_i$的表达式: $$x_i=\frac{\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1,i-1} & b_1 & a_{1,i+1} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2,i-1} & b_2 & a_{2,i+1} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{n,i-1} & b_n & a_{n,i+1} & \cdots & a_{nn} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1,i-1} & a_{1i} & a_{1,i+1} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2,i-1} & a_{2i} & a_{2,i+1} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{n,i-1} & a_{ni} & a_{n,i+1} & \cdots & a_{nn} \end{vmatrix}}$$ 其中,$i=1,2,\cdots,n$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值