Tidyverse| XX_join :多个数据表(文件)之间的各种连接

8 篇文章 2 订阅
8 篇文章 2 订阅

本文首发于公众号:“生信补给站” Tidyverse| XX_join :多个数据表(文件)之间的各种连接

前面分享了单个文件中的select列filter行列拆分等,实际中经常是多个数据表,综合使用才能回答你所感兴趣的问题。

本次简单的介绍多个表(文件)连接的方法。

一 载入数据,R包

library(tidyverse)
x <- tribble(
  ~key, ~val_x,
     1, "x1",
     2, "x2",
     3, "x3"
)
y <- tribble(
  ~key, ~val_y,
     1, "y1",
     2, "y2",
     4, "y3"
)

二 合并数据

向数据框中加入新变量,新变量的值是另一个数据框中的匹配观测。

1 连接方式

1) 内连接 inner_join

内连接是最简单的一种连接,只要两个观测的键是相等的,即可匹配。

img

注释:匹配在实际的连接操作中是用圆点表示的。圆点的数量 = 匹配的数量 = 结果中行的数量。下同

x %>% 
  inner_join(y, by = "key")
# A tibble: 2 x 3
     key val_x val_y
   <dbl> <chr> <chr>
 1     1 x1    y1   
 2     2 x2    y2

内连接最重要的性质是,没有匹配的行不会包含在结果中。容易丢失观测,慎用。

2) 外连接

​ 外连接则保留至少存在于一个表中的观测。外连接有 3 种类型:
• 左连接 left_join:保留 x 中的所有观测。
• 右连接 right_join:保留 y 中的所有观测
• 全连接 full_join:保留 x 和 y 中的所有观测。

img

x %>%
left_join(y, by = "key")
# A tibble: 3 x 3
    key val_x val_y
  <dbl> <chr> <chr>
1     1 x1    y1   
2     2 x2    y2   
3     3 x3    <NA> 
x %>%
right_join(y, by = "key")
# A tibble: 3 x 3
    key val_x val_y
  <dbl> <chr> <chr>
1     1 x1    y1   
2     2 x2    y2   
3     4 <NA>  y3 
x %>%
full_join(y, by = "key")
# A tibble: 4 x 3
    key val_x val_y
  <dbl> <chr> <chr>
1     1 x1    y1   
2     2 x2    y2   
3     3 x3    <NA> 
4     4 <NA>  y3 

2 重复键

以上均假设键具有唯一性,但情况并非总是如此。

如果x中的key变量,在y中有多个同样的key,那么所有的结合可能都会罗列出来

img

x1 <- tribble(
  ~key, ~val_x,
     1, "x1",
     2, "x2",
     2, "x3",
     1, "x4"
)
y1 <- tribble(
  ~key, ~val_y,
     1, "y1",
     2, "y2"
)
left_join(x1, y1, by = "key")
 # A tibble: 4 x 3
     key val_x val_y
   <dbl> <chr> <chr>
 1     1 x1    y1   
 2     2 x2    y2   
 3     2 x3    y2   
 4     1 x4    y1

3 定义连接键

  1. 默认值 by = NULL

​ 使用存在于两个表中的所有变量,这种方式称为自然连接。

left_join(x, y)
Joining, by = "key"
# A tibble: 3 x 3
    key val_x val_y
  <dbl> <chr> <chr>
1     1 x1    y1   
2     2 x2    y2   
3     3 x3    <NA> 
  1. 定义匹配键 by = c("a" = "b")

​ 匹配 x 表中的 a 变量和 y 表中的 b 变量,输出结果中使用的是 x 表中的变量。

y_1 <- tribble(
  ~key2, ~val_y,
     1, "y1",
     2, "y2"
)
left_join(x, y_1, by = c("key" = "key2"))
# A tibble: 3 x 3
    key val_x val_y
  <dbl> <chr> <chr>
1     1 x1    y1   
2     2 x2    y2   
3     3 x3    <NA> 
  1. 多个匹配键
x2 <- tribble(
  ~key,~key1, ~val_x,
     1, 2018,"x1",
     2, 2019,"x2",
     3, 2019,"x3"
)
y2 <- tribble(
  ~key, ~key1,~val_y,
     1, 2018,"y1",
     2, 2018,"y2",
     4, 2019,"y3"
)
inner_join(x2,y2,by = c("key","key1"))
# A tibble: 1 x 4
    key  key1 val_x val_y
  <dbl> <dbl> <chr> <chr>
1     1  2018 x1    y1   

三 筛选连接

筛选连接匹配观测的方式与合并连接相同,但前者影响的是观测,而不是变量。筛选连接
有两种类型。

semi_join函数
  • 保留 x 表中与 y 表中的观测相匹配的所有观测

img

semi_join(x, y, by = "key")
# A tibble: 2 x 2
    key val_x
  <dbl> <chr>
1     1 x1   
2     2 x2
anti_join函数
  • 丢弃 x 表中与 y 表中的观测相匹配的所有观测。

img

anti_join(x, y, by = "key")
# A tibble: 1 x 2
    key val_x
  <dbl> <chr>
1     3 x3 
参考资料:

https://r4ds.had.co.nz/

《R数据科学》

【觉得不错,右下角点个“在看”,期待您的转发,谢谢!】

img

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值