maftools|TCGA肿瘤突变数据的汇总,分析和可视化

本文介绍了如何使用R包maftools对TCGA肿瘤突变数据进行分析和可视化,包括绘制MAF的整体结果图、oncoplot、Oncostrip、Transition与Transversions图、Rainfall plots、比较突变负载、基因云图、Somatic Interactions和Forest plots,以及探索Oncogenic信号通路。示例基于TCGA的LIHC数据,提供了详细的操作步骤。
摘要由CSDN通过智能技术生成

本文首发于公众号“生信补给站”,https://mp.weixin.qq.com/s/WG4JHs9RSm5IEJiiGEzDkg

之前介绍了使用maftools | 从头开始绘制发表级oncoplot(瀑布图) R-maftools包绘制组学突变结果(MAF)的oncoplot或者叫“瀑布图”,以及一些细节的更改和注释。

本文继续介绍maftools对于MAF文件的其他应用,为更易理解和重现,本次使用TCGA下载的LIHC数据。

一 数据部分

setwd("C:\\Users\\Maojie\\Desktop\\maftools-V2\\")
library(maftools)
laml.maf = read.csv("TCGA.LIHC.mutect.maf.csv",header=TRUE) 

#本次只展示maf的一些统计绘图,只读入组学数据,不添加临床数据
laml = read.maf(maf = laml.maf)
#查看数据的基本情况
laml
An object of class  MAF 
                        ID summary   Mean Median
 1:             NCBI_Build       1     NA     NA
 2:                 Center       1     NA     NA
 3:                Samples     364     NA     NA
 4:                 nGenes   12704     NA     NA
 5:        Frame_Shift_Del    1413  3.893      3
 6:        Frame_Shift_Ins     551  1.518      1
 7:           In_Frame_Del     277  0.763      0
 8:           In_Frame_Ins     112  0.309      0
 9:      Missense_Mutation   28304 77.972     63
10:      Nonsense_Mutation    1883  5.187      4
11:       Nonstop_Mutation      45  0.124      0
12:            Splice_Site    1051  2.895      2
13: Translation_Start_Site      65  0.179      0
14:                  tota
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值