
尽管通过meta软件包调用metabin或metacont函数,可以计算出每个研究中的个体效应大小(individual effect sizes),但一些论文却没有以正确的格式报告这些效应量数据。特别是,一些较老的文章可能只报告了t检验,ANOVA方差分析或χ2检验的结果。不过,如果文章中报告了足够多的数据,我们也可以通过这些数据计算出效应量大小(例如,Hedges’ g)和标准误差(SE)。然后,使用Metagen函数将其作为预计算的效应量(pre-calculated effect sizes)用于meta分析(请参阅第4.1.1章)。
Hedges’g值
在处理连续的结果数据时,通常会计算标准化平均差异(standardized mean difference,SMD)作为每个研究的结果及汇总指标(summary measure)(Borenstein et al. 2011)。常用的SMD值如下。
在单次试验中计算SMD时,常用格式是Cohen’ d(Cohen 1988)。但是,在小规模研究中,采用这种简易方式计算的SMD会显示出轻微的偏差,高估了效应量(Hedges 1981)。
Hedges'g是类似的汇总指标,但可以控制这种偏差。它使用略有不同的公式来计算合并方差Spooled,S∗pooled。根据Hedges和Olkin的公式,可以进行从d到g的转换(Hedges and Olkin 1985)。

注:Hedges’g是meta分析中常用的格式,也是RevMan中的标准输出格式。因此,我们强烈建议您在元分析中也使用此度量方式。在meta的metabin和metacont函数中,如果我们设置sm=“SMD”,则会自动计算出每个研究的Hedges’g。但是,如果您使用metagen函数,则首先需要自己计算出每个研究的Hedges’g。
为了计算效应大小,我们将使用Daniel Lüdecke的esc软件包(Lüdecke2018)。因此,请首先使用install.packages(“ esc”)命令安装此软件包,然后将其加载到库中。
library(esc)

15.1 根据Mean和SD计算Hedges’g
根据两个试验组的Mean,Standard Deviation和ngroup计算Hedges’g,可以使用esc_mean_sd函数和以下参数。
·grp1m:第一组的Mean(例如干预)。
·grp1sd:第一组的Standard Deviation。
·grp1n:第一组的sample size。
·grp2m:第二组的Mean。
·grp2sd:第二组的Standard Deviation。
·grp2n:第二组的sample size。
·totalsd:如果未报告每个试验组Standard Deviation,则为full sample standard deviation。
·es.type:我们想要计算的效果量度。在我们的例子中是“g”。但是我们也可以使用“d”来计算Cohen’s d。
代码示例如下:
esc_mean_sd(grp1m = 10.3, grp1sd = 2.5, grp1n = 60,grp2m = 12.3, grp2sd = 3.1, grp2n = 56, es.type = "g")## ## Effect Size Calculation for Meta Analysis## ## Conversion: mean and sd to effect size Hedges' g## Effect Size: -0.7082## Standard Error: 0.1916## Variance: 0.0367## Lower CI: -1.0837## Upper CI: -0.3326## Weight: 27.2374

15.2 根据回归系数(regression coefficient)计算Hedges’g
15.2.1非标准化回归系数(Unstandardized regression coefficients)
我们也可以根据非标准化或标准化回归系数计算Hedges'g(Lipsey and Wilson 2001)。
对于非标准化的回归系数,我们可以使用esc_B函数和以下参数:
·b:非标准化系数b(the “treatment” predictor)。
·sdy:因变量y(例如,结果变量)的standard deviation。
·grp1n:第一组参与者的数量。
·grp2n:第二组参与者的数量。
·es.type:我们想要计算的效果量度。在我们的例子中是“g”。但是我们也可以使用“d”来计算Cohen’s d。
代码示例如下:
esc_B(b=3.3,sdy=5,grp1n = 100,grp2n = 150,es.type = "g")## ## Effect Size Calculation for Meta Analysis## ## Conversion: unstandardized regression coefficient to effect size Hedges' g##