四元数在飞行动力学建模中的应用

1.四元数法

47a29285d4aa411181c9dc41723cb317.png

d016065ae5e04c51b73b250f3f218d58.png 

2.飞行动力学模型

f57182caf5cf49ebb11a0123d25b7803.png 

 

基于Matlab飞行机械臂耦合动力学建模是一个复杂的过程,需要综合考虑飞行机械臂的动力学特性。以下是一些基本步骤方法: ### 1. 建立飞行动力学模型 首先,需要建立飞行器的基本动力学模型。飞行器的运动可以通过刚体动力学方程来描述,包括平移运动旋转运动。 ```matlab % 飞行器质量 m = 1.0; % 飞行器惯性矩阵 I = [0.02, 0, 0; 0, 0.02, 0; 0, 0, 0.04]; % 位置向量 r = [0; 0; 0]; % 速度向量 v = [0; 0; 0]; % 姿态四元数 q = [1; 0; 0; 0]; % 角速度向量 omega = [0; 0; 0]; % 力 F = [0; 0; 0]; % 力矩 M = [0; 0; 0]; % 动力学方程 dr_dt = v; dv_dt = F / m; dq_dt = 0.5 * quatmultiply(q, [0; omega]); domega_dt = I \ (M - cross(omega, I * omega)); % 时间步长 dt = 0.01; % 仿真时间 T = 10; % 仿真步数 N = T / dt; % 初始化状态向量 state = [r; v; q; omega]; % 仿真循环 for i = 1:N % 更新状态 state = state + dt * [dr_dt; dv_dt; dq_dt; domega_dt]; % 更新力力矩 F = [0; 0; m * 9.81]; % 重力 M = [0; 0; 0]; % 更新导数 dr_dt = state(4:6); dv_dt = F / m; dq_dt = 0.5 * quatmultiply(state(7:10), [0; state(11:13)]); domega_dt = I \ (M - cross(state(11:13), I * state(11:13))); end ``` ### 2. 建立机械臂动力学模型 接下来,建立机械臂的动力学模型。机械臂的运动可以通过多刚体动力学方程来描述。 ```matlab % 机械臂关节角度 theta = [0; 0]; % 关节角速度 dtheta = [0; 0]; % 关节角加速度 ddtheta = [0; 0]; % 关节力矩 tau = [0; 0]; % 机械臂质量矩阵 M_arm = [1, 0; 0, 1]; % 机械臂科氏力离心力 C_arm = [0, 0; 0, 0]; % 机械臂重力项 G_arm = [0; 0]; % 动力学方程 ddtheta = M_arm \ (tau - C_arm * dtheta - G_arm); % 仿真循环 for i = 1:N % 更新关节角度角速度 theta = theta + dt * dtheta; dtheta = dtheta + dt * ddtheta; % 更新关节力矩 tau = [0; 0]; % 更新关节角加速度 ddtheta = M_arm \ (tau - C_arm * dtheta - G_arm); end ``` ### 3. 耦合动力学模型 将飞行机械臂的动力学模型进行耦合,得到完整的系统动力学模型。 ```matlab % 耦合后的质量矩阵 M_total = [m * eye(3), zeros(3, 3); zeros(3, 3), I]; % 耦合后的科氏力离心力 C_total = [zeros(3, 3), zeros(3, 3); zeros(3, 3), -cross(omega, I * omega)]; % 耦合后的重力项 G_total = [m * 9.81; 0; 0]; % 耦合后的动力学方程 state = [r; v; q; omega; theta; dtheta]; dr_dt = v; dv_dt = F / m; dq_dt = 0.5 * quatmultiply(q, [0; omega]); domega_dt = I \ (M - cross(omega, I * omega)); ddtheta = M_arm \ (tau - C_arm * dtheta - G_arm); % 仿真循环 for i = 1:N % 更新状态 state = state + dt * [dr_dt; dv_dt; dq_dt; domega_dt; dtheta; ddtheta]; % 更新力力矩 F = [0; 0; m * 9.81]; % 重力 M = [0; 0; 0]; tau = [0; 0]; % 更新导数 dr_dt = state(4:6); dv_dt = F / m; dq_dt = 0.5 * quatmultiply(state(7:10), [0; state(11:13)]); domega_dt = I \ (M - cross(state(11:13), I * state(11:13))); ddtheta = M_arm \ (tau - C_arm * dtheta - G_arm); end ``` ### 解释 1. **飞行动力学模型**:描述了飞行器的平移旋转运动。 2. **机械臂动力学模型**:描述了机械臂的关节运动。 3. **耦合动力学模型**:将飞行机械臂的动力学模型进行耦合,得到完整的系统动力学模型。 通过上述步骤,可以建立一个基于Matlab飞行机械臂耦合动力学模型。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quincy.Liu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值