前两期文章讲完了气动力和气动力矩的模型,本期将来讲解一下六自由度部分的动力学与运动学方程。
1、六自由度动力学方程
三维空间中的运动可以分为平动(线运动)和转动(角运动)。平动:前后、左右、上下;转动:滚转、俯仰、偏航。
线运动动力学方程可以表示如下:
∑ F = d d t ( m V ) \sum \boldsymbol{F}=\frac{\mathrm{d}}{\mathrm{d}t}(m\boldsymbol{V}) ∑F=dtd(mV)
角运动动力学方程可以表示如下:
∑ M = d d t ( L ) \sum \boldsymbol{M}=\frac{\mathrm{d}}{\mathrm{d}t}(\boldsymbol{L}) ∑M=dtd(L)
式中, F \boldsymbol{F} F、 M \boldsymbol{M} M为飞行器所收到的合外力、合外力距。
在动坐标系(机体坐标系)中将地面坐标系中得到的机体速度 V \boldsymbol{V} V及动量矩 L \boldsymbol{L} L向机体轴分解:
d V d t = e V δ V δ t + Ω × V d L d t = e L δ L δ t + Ω × L \begin{aligned}\frac{\mathrm{d}\boldsymbol{V}}{\mathrm{d}t}&=\boldsymbol{e}_{\boldsymbol{V}}\frac{\delta_{\boldsymbol{V}}}{\delta_{t}}+\boldsymbol{\Omega}\times\boldsymbol{V}\\ \frac{\mathrm{d}\boldsymbol{L}}{\mathrm{d}t}&=\boldsymbol{e}_{\boldsymbol{L}}\frac{\delta_{\boldsymbol{L}}}{\delta_{t}}+\boldsymbol{\Omega}\times\boldsymbol{L}\end{aligned} dtdVdtdL=eVδtδV+Ω×V=eLδtδL+Ω×L
e V , e L \boldsymbol{e}_{\boldsymbol{V}},\boldsymbol{e}_{\boldsymbol{L}} eV,eL为沿飞行速度矢量 V \boldsymbol{V} V和动量矩 L \boldsymbol{L} L的单位向量;
δ V δ t , δ L δ t \frac{\delta_{\boldsymbol{V}}}{\delta_{t}},\frac{\delta_{\boldsymbol{L}}}{\delta_{t}} δtδV,δtδL为动坐标系内的相对导数;
Ω \boldsymbol{\Omega} Ω为动坐标系相对静坐标系的总角速度向量。
将 Ω \boldsymbol{\Omega} Ω, V \boldsymbol{V} V, L \boldsymbol{L} L在动坐标系(机体系)中分解:
V = i u + j v + k w Ω = i p + j q + k r L = i ( p I x − r I x z ) + j ( q I y ) + k ( r I z − p I x z ) \begin{aligned} \boldsymbol{V} & =\boldsymbol{i} u+\boldsymbol{j} v+\boldsymbol{k} w \\ \boldsymbol{\Omega} & =\boldsymbol{i} p+\boldsymbol{j} q+\boldsymbol{k} r \\ \boldsymbol{L} & =\boldsymbol{i}\left(p I_x-r I_{x z}\right)+\boldsymbol{j}\left(q I_y\right)+\boldsymbol{k}\left(r I_z-p I_{x z}\right) \end{aligned} VΩL=iu+jv+kw=ip+jq+kr=i(pIx−rIxz)+j(qIy)+k(rIz−pIxz)
据此给出下面六自由度方程组(详细推导过程可参考《飞行控制系统》):
- 力方程组(Force Equations)
{ u ˙ = v r − w q − g sin θ + F x m v ˙ = − u r + w p + g cos θ sin ϕ + F y m w ˙ = u q − v p + g cos θ cos ϕ + F z m \begin{cases}\dot{u}=vr-wq-g\sin\theta+\frac{F_x}m\\ \dot{v}=-ur+wp+g\cos\theta\sin\phi