以下是关于Gemma3、QwQ、DeepSeek-R1、Llama3.3和Phi4五大模型的综合解析,涵盖其核心特性、应用场景及相互关系:
1. Gemma3(谷歌)
- 定位:轻量级开源多模态大模型,主打单卡高效部署。
- 参数规模:1B、4B、12B、27B四种版本,其中27B版本性能接近DeepSeek R1(671B参数)。
- 核心能力:
- 多模态支持:集成SigLIP视觉编码器,可分析文本、图像及短视频。
- 长上下文:128K tokens窗口,优化局部/全局注意力层交替机制,降低显存占用。
- 多语言覆盖:预训练支持140+语言,开箱即用35+语言。
- 部署优势:单张H100 GPU即可运行27B版本,推理速度达每秒112 tokens。
- 适用场景:本地轻量级AI应用(如移动端图像问答)、长文档分析、多语言服务。
2. QwQ-32B(阿里巴巴)
- 定位:高性价比开源推理模型,专攻数学与编程任务。
- 参数规模:32B参数,性能对标DeepSeek R1(67