Mem0 简介
Mem0
(发音为“mem-zero”)通过智能内存层增强了 AI 助手和代理,从而实现了个性化的 AI 交互。Mem0
可以记住用户偏好、适应个人需求并随着时间的推移不断改进,使其成为客户支持聊天机器人、AI 助手和自主系统的理想选择。
官网地址 : https://docs.mem0.ai/
项目开源地址 :https://github.com/mem0ai/mem0
核心功能
- 用户、会话和 AI 代理内存:跨用户会话、交互和 AI 代理保留信息,确保连续性和上下文。
- 自适应个性化:根据用户交互和反馈不断改进个性化。
- 开发人员友好 API:提供简单的 API,可无缝集成到各种应用程序中。
- 平台一致性:确保不同平台和设备上的行为和数据一致。
- 托管服务:提供托管解决方案,以便于部署和维护。
Mem0 如何工作?
Mem0
利用混合数据库方法来管理和检索 AI 代理和助手的长期记忆。每个记忆都与一个唯一标识符相关联,例如用户 ID 或代理 ID,这使得 Mem0
能够组织和访问特定于个人或情境的记忆。
当使用 add()
方法将消息添加到 Mem0
时,系统会提取相关事实和偏好,并将其存储在数据存储中:矢量数据库、键值数据库和图形数据库。这种混合方法可确保以最有效的方式存储不同类型的信息,从而使后续搜索快速有效。
当 AI 代理或 LLM
需要回忆记忆时,它会使用 search()
方法。然后,Mem0 会在这些数据存储中进行搜索,从每个来源检索相关信息。然后,这些信息会通过评分层,该评分层会根据相关性、重要性和新近性评估其重要性。这可确保只显示最个性化和最有用的上下文。
然后可以根据需要将检索到的记忆附加到 LLM
的提示中,从而增强其响应的个性化和相关性。
常见用例
-
个性化学习助手:长期记忆使学习助手能够记住用户的偏好、过去的互动和进度,从而提供更加定制化、有效的学习体验。
-
客户支持 AI 代理:通过保留以前交互的信息,客户支持机器人可以提供更准确、更具情境感知的帮助,提高客户满意度并缩短解决时间。
-
医疗助理:长期记忆使医疗助理能够跟踪患者病史、用药时间表和治疗计划,确保个性化和一致的护理。
-
虚拟伴侣:虚拟伴侣可以利用长期记忆,通过记住个人详细信息、偏好和过去的对话来与用户建立更深层次的关系,使互动更有意义。
-
生产力工具:长期记忆可帮助生产力工具记住用户习惯、常用文档和任务历史记录,从而简化工作流程并提高效率。
-
游戏 AI:在游戏中,具有长期记忆的 AI 可以通过记住玩家的选择、策略和进度并相应地调整游戏环境来创造更身临其境的体验。
Mem0 与 RAG 有何不同?
-
Mem0
的大型语言模型 (LLM
) 内存实现与检索增强生成 (RAG
) 相比具有多项优势: -
实体关系:
Mem0
可以理解和关联不同交互中的实体,而 RAG 则从静态文档中检索信息。这可以更深入地理解上下文和关系。 -
新近度、相关性和衰减:Mem0 优先考虑最近的交互并逐渐忘记过时的信息,确保记忆保持相关性和最新性,以便做出更准确的响应。
-
情境连续性:
Mem0
在会话之间保留信息,保持对话和交互的连续性,这对于虚拟伴侣或个性化学习助手等长期参与应用程序至关重要。 -
自适应学习:
Mem0
根据用户交互和反馈提高其个性化,使得记忆更加准确,并随着时间的推移更适合个人用户。 -
动态更新:
Mem0
可以使用新信息和交互动态更新其内存,而不像 RAG 那样依赖静态数据。这允许实时调整和改进,从而增强用户体验。
这些先进的内存功能使 Mem0
成为开发人员创建个性化和情境感知 AI 应用程序的强大工具。
快速开始
请按照以下步骤开始使用 Mem0 Open Source:
- 安装 Mem0 开源
- 添加记忆
- 找回记忆
1.安装Mem0开源
安装依赖包
pip install mem0ai
2. 添加记忆
实例化客户端
from mem0 import Memory
m = Memory()
添加记忆
# For a user
result = m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
3. 恢复记忆
搜索相关记忆
related_memories = m.search(query="What are Alice's hobbies?", user_id="alice")
获取某个用户的所有记忆
# Get all memories
all_memories = m.get_all()
相关文章推荐
《Chainlit快速实现AI对话应用的界面定制化教程》
《Chainlit接入FastGpt接口快速实现自定义用户聊天界面》
《使用 Xinference 部署本地模型》
《Fastgpt接入Whisper本地模型实现语音输入》
《Fastgpt部署和接入使用重排模型bge-reranker》
《Fastgpt部署接入 M3E和chatglm2-m3e文本向量模型》
《Fastgpt 无法启动或启动后无法正常使用的讨论(启动失败、用户未注册等问题这里)》
《vllm推理服务兼容openai服务API》
《vLLM模型推理引擎参数大全》
《解决vllm推理框架内在开启多显卡时报错问题》
《Ollama 在本地快速部署大型语言模型,可进行定制并创建属于您自己的模型》