解决LLM的永久记忆的解决方案-Mem0实现个性化AI永久记忆功能

Mem0 简介

Mem0(发音为“mem-zero”)通过智能内存层增强了 AI 助手和代理,从而实现了个性化的 AI 交互。Mem0 可以记住用户偏好、适应个人需求并随着时间的推移不断改进,使其成为客户支持聊天机器人、AI 助手和自主系统的理想选择。

官网地址 : https://docs.mem0.ai/
项目开源地址 :https://github.com/mem0ai/mem0

核心功能

  • 用户、会话和 AI 代理内存:跨用户会话、交互和 AI 代理保留信息,确保连续性和上下文。
  • 自适应个性化:根据用户交互和反馈不断改进个性化。
  • 开发人员友好 API:提供简单的 API,可无缝集成到各种应用程序中。
  • 平台一致性:确保不同平台和设备上的行为和数据一致。
  • 托管服务:提供托管解决方案,以便于部署和维护。

Mem0 如何工作?

Mem0 利用混合数据库方法来管理和检索 AI 代理和助手的长期记忆。每个记忆都与一个唯一标识符相关联,例如用户 ID 或代理 ID,这使得 Mem0 能够组织和访问特定于个人或情境的记忆。

当使用 add() 方法将消息添加到 Mem0 时,系统会提取相关事实和偏好,并将其存储在数据存储中:矢量数据库、键值数据库和图形数据库。这种混合方法可确保以最有效的方式存储不同类型的信息,从而使后续搜索快速有效。

当 AI 代理或 LLM 需要回忆记忆时,它会使用 search() 方法。然后,Mem0 会在这些数据存储中进行搜索,从每个来源检索相关信息。然后,这些信息会通过评分层,该评分层会根据相关性、重要性和新近性评估其重要性。这可确保只显示最个性化和最有用的上下文。

然后可以根据需要将检索到的记忆附加到 LLM 的提示中,从而增强其响应的个性化和相关性。

常见用例

  • 个性化学习助手:长期记忆使学习助手能够记住用户的偏好、过去的互动和进度,从而提供更加定制化、有效的学习体验。

  • 客户支持 AI 代理:通过保留以前交互的信息,客户支持机器人可以提供更准确、更具情境感知的帮助,提高客户满意度并缩短解决时间。

  • 医疗助理:长期记忆使医疗助理能够跟踪患者病史、用药时间表和治疗计划,确保个性化和一致的护理。

  • 虚拟伴侣:虚拟伴侣可以利用长期记忆,通过记住个人详细信息、偏好和过去的对话来与用户建立更深层次的关系,使互动更有意义。

  • 生产力工具:长期记忆可帮助生产力工具记住用户习惯、常用文档和任务历史记录,从而简化工作流程并提高效率。

  • 游戏 AI:在游戏中,具有长期记忆的 AI 可以通过记住玩家的选择、策略和进度并相应地调整游戏环境来创造更身临其境的体验。

Mem0 与 RAG 有何不同?

  • Mem0 的大型语言模型 (LLM) 内存实现与检索增强生成 (RAG) 相比具有多项优势:

  • 实体关系Mem0 可以理解和关联不同交互中的实体,而 RAG 则从静态文档中检索信息。这可以更深入地理解上下文和关系。

  • 新近度、相关性和衰减:Mem0 优先考虑最近的交互并逐渐忘记过时的信息,确保记忆保持相关性和最新性,以便做出更准确的响应。

  • 情境连续性Mem0 在会话之间保留信息,保持对话和交互的连续性,这对于虚拟伴侣或个性化学习助手等长期参与应用程序至关重要。

  • 自适应学习Mem0 根据用户交互和反馈提高其个性化,使得记忆更加准确,并随着时间的推移更适合个人用户。

  • 动态更新Mem0 可以使用新信息和交互动态更新其内存,而不像 RAG 那样依赖静态数据。这允许实时调整和改进,从而增强用户体验。

这些先进的内存功能使 Mem0 成为开发人员创建个性化和情境感知 AI 应用程序的强大工具。

快速开始

请按照以下步骤开始使用 Mem0 Open Source:

  • 安装 Mem0 开源
  • 添加记忆
  • 找回记忆

1.安装Mem0开源

安装依赖包

pip install mem0ai

2. 添加记忆

实例化客户端

from mem0 import Memory
m = Memory()

添加记忆

# For a user
result = m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})

3. 恢复记忆

搜索相关记忆

related_memories = m.search(query="What are Alice's hobbies?", user_id="alice")

获取某个用户的所有记忆

# Get all memories
all_memories = m.get_all()

相关文章推荐

《Chainlit快速实现AI对话应用的界面定制化教程》
《Chainlit接入FastGpt接口快速实现自定义用户聊天界面》
《使用 Xinference 部署本地模型》
《Fastgpt接入Whisper本地模型实现语音输入》
《Fastgpt部署和接入使用重排模型bge-reranker》
《Fastgpt部署接入 M3E和chatglm2-m3e文本向量模型》
《Fastgpt 无法启动或启动后无法正常使用的讨论(启动失败、用户未注册等问题这里)》
《vllm推理服务兼容openai服务API》
《vLLM模型推理引擎参数大全》
《解决vllm推理框架内在开启多显卡时报错问题》
《Ollama 在本地快速部署大型语言模型,可进行定制并创建属于您自己的模型》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泰山AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值