Fast Global Registration(快速全局配准)

Fast Global Registration

1. 配准问题的目标函数:

其中 ρ \rho ρ取为带缩放系数的Geman-McClure函数:

它表示一种对误差的测量,相比于均匀方误差具有更好的抗噪性.当其中参数 μ \mu μ较大时, ρ ( x ) \rho(x) ρ(x)受较大范围的自变量变化影响,而随着 μ \mu μ的减小 ρ ( x ) \rho(x) ρ(x)将更容易受到较小 x x x的影响,从而将距离较大的匹配点对作为异常点(outlier)无效化.
2. 目标函数的高效优化方法:
通过将线过程(Line Pricess)与稳健统计(Robust Statistics)相结合给出了求解目标函数的方法

其中, Ψ ( l p , q ) \Psi(l_{p,q}) Ψ(lp,q)是一个先验函数,取为:

为了优化 E ( T , L ) ) E(T,\mathbb{L})) E(T,L))首先将它关于 l p , q l_{p,q} lp,q求偏导

得到:

其中 T T 使用当前迭代步的值而被视为固定项,从 l p , q l_{p,q} lp,q的表达式中可以看出,当前迭代步中最优的 l p , q l_{p,q} lp,q与两片点云对应点的距离反相关,从而作为该对应点的权重项趋向于将错误匹配的点对无效化。
在这里插入图片描述
3. 优化:
接下来将权重 l p , q l_{p,q} lp,q视为固定值,目标函数变成了对应点之间距离的 L 2 L^2 L2惩罚的加权总和。对 T T T进行优化,可以使用封闭解SVD直接求解,然而由于优化过程中初始迭代步中的源点云和目标点云具有较大噪声且 l p , q l_{p,q} lp,q随着优化不断变化,SVD方法在不同迭代步中会解得剧烈变化的结果,而严重偏离目标的空间变换会产生错误估计的 l p , q l_{p,q} lp,q,从而使算法收敛至错误结果[2]。因此使用使用梯度下降法迭代求解而非利用闭形式求解。
T T T线性化表达为:

T T T近似为的线性函数:

由于旋转 T k T^k Tk 是已知量,于是利用Gauss-Newton方法, ξ \xi ξ 可以通过求解如下线性方程组得到:

其中, r r r是剩余向量, J r J_r Jr是它的Jacobian.
4.对应点寻找:
使用FPFH对特征点进行描述,然后根据最近点原则寻找correspondence,然后根据互为对应点原则Reciprocity test.和Tuple test剔除一些outlier.
5.文章的扩展算法:
张琮毅[2]等人以这个算法为框架,在目标函数添加了尺度因子进行结算,提出了一种尺度可变的快速全局点云配准方法:

参考文献:1.《Fast Global Registration》Qian-Yi Zhou Jaesik Park Vladlen Koltun
2. 《尺度可变的快速全局点云配准方法》张琮毅等。代码:https://github.com/Zcynical/UrbanReg
辅助资料:高斯牛顿法详解:https://blog.csdn.net/qq_42138662/article/details/109289129

### Fast Global Registration 算法原理 #### 1. 简介 Fast Global Registration (FGR) 是一种用于部分重叠3D表面的快速全局配准算法[^2]。此算法旨在提高传统迭代最近点(ICP)等局部优化方法的速度和精度。 #### 2. 主要特点 - **非迭代特性**:不同于传统的基于迭代的方法,FGR 不依赖于反复调整参数来达到最优解。 - **高效性**:通过减少不必要的计算步骤,在保持高精度的同时显著提升了处理速度。 - **鲁棒性强**:即使面对噪声数据或者存在较大初始误差的情况也能稳定工作。 #### 3. 关键技术 ##### 3.1 特征描述子构建 为了实现高效的匹配,FGR 使用了精心设计的特征描述符,这些描述符能够有效地捕捉几何形状的信息并支持快速检索相似区域. ##### 3.2 高维直方图表示 采用多维度直方图的形式对点云中的每一个点进行编码,从而形成紧凑而富有表达力的数据结构这有助于加速后续阶段中候选对应关系的选择过程.[^4] ##### 3.3 可靠对应的筛选机制 利用统计学原则去除错误匹配项保留最有可能构成正确变换矩阵基础的那一组点对集合;具体来说就是根据距离度量标准挑选出那些具有最小化残差平方和特性的样本作为最终输入给求解器使用的依据. ##### 3.4 刚体运动估计 最后一步则是运用稳健估计理论框架下的优化策略—比如加权最小二乘法(WLS)—去寻找能使所有选定可靠对应之间相对位移尽可能小的最佳旋转和平移向量组合方案完成整个注册流程. ```python import numpy as np from open3d.cpu.pybind.registration import registration_fast_based_on_feature_matching def fast_global_registration(source_cloud, target_cloud): result = registration_fast_based_on_feature_matching( source=source_cloud, target=target_cloud, use_absolute_scale=True, max_correspondence_distance=np.inf, estimation_method="point_to_plane" ) return result.transformation_matrix ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值