线性系统粗浅认识——第五次作业


声明:本人特别菜,不研究相关的方向,差点挂科,这个作业的内容仅供交流。

题目

仿真说明LC电路不是BIBO稳定。设计一个输入信号使得电容电压趋向无穷,说明该信号与LC的关系。
我进行了三个方面的分析

解答

一、串联RLC系统

串联RLC系统如下:
在这里插入图片描述

图1 RLC电路电路图

输出时电容电压 U c {U_c} Uc,输入是电源电压 U s {U_s} Us ,电容大小为 C C C,电感为 L L L,电阻大小为 R R R
U s ( t ) = R i ( t ) + L d i d t + U c ( t ) i ( t ) = C d U c d t \begin{array}{l} {U_s}(t) = Ri(t) + L\frac{{di}}{{dt}} + {U_c}(t)\\ i(t) = C\frac{{d{U_c}}}{{dt}} \end{array} Us(t)=Ri(t)+Ldtdi+Uc(t)i(t)=CdtdUc
可以得到
U s ( t ) = R C d U c d t + L C d U c 2 d t 2 + U c {U_s}(t) = RC\frac{{d{U_c}}}{{dt}} + LC\frac{{dU_c^2}}{{d{t^2}}} + {U_c} Us(t)=RCdtdUc+LCdt2dUc2+Uc
两边进行拉普拉斯变换可以得到
U s ( s ) = R C s U c ( s ) + L C s 2 U c ( s ) + U c ( s ) {U_s}(s) = RCs{U_c}(s) + LC{s^2}{U_c}(s) + {U_c}(s) Us(s)=RCsUc(s)+LCs2Uc(s)+Uc(s)
所以
U c ( s ) U s ( s ) = 1 L C s 2 + R C s + 1 = 1 L C ( s − λ 1 ) ( s − λ 2 ) \frac{{{U_c}(s)}}{{{U_s}(s)}} = \frac{1}{{LC{s^2} + RCs + 1}} = \frac{1}{{LC(s - {\lambda _1})(s - {\lambda _2})}} Us(s)Uc(s)=LCs2+RCs+11=LC(sλ1)(sλ2)1

R e ( λ 1 ) < 0 , {\mathop{\rm Re}\nolimits} ({\lambda _1}) < 0, Re(λ1)<0, R e ( λ 2 ) < 0 {\mathop{\rm Re}\nolimits} ({\lambda _2}) < 0 Re(λ2)<0 ,因此所有的根都位于 s s s的开的左半平面,因此系统一定是BIBO稳定。
( R C ) 2 − 4 L C = 0 {(RC)^2} - 4LC = 0 (RC)24LC=0时候, λ 1 = λ 2 {\lambda _1} = {\lambda _2} λ1=λ2 ,该系统具有重根
下面令 C = 100 F , R = 100 Ω , L = 4 H C = 100F,R = 100\Omega ,L = 4H C=100F,R=100Ω,L=4H,满足 ( R C ) 2 − 4 L C = 0 {(RC)^2} - 4LC = 0 (RC)24LC=0
利用MATLAB的sinmulink模块进行仿真
仿真电路图如下所示:
在这里插入图片描述

图2 RLC电路仿真图

在这里插入图片描述

图3 RLC电路电压仿真图

从图中看出仿真结果输出是有界的,与上述结论该系统BIBO稳定的相符合。

二、串联LC系统

从RLC系统中去掉 R R R,输出时电容电压 U c {U_c} Uc,输入是电源电压 U s {U_s} Us,电容大小为 C C C,电感为 L L L
U s ( t ) = L d i d t + U c ( t ) i ( t ) = C d U c d t \begin{array}{l} {U_s}(t) = L\frac{{di}}{{dt}} + {U_c}(t)\\ i(t) = C\frac{{d{U_c}}}{{dt}} \end{array} Us(t)=Ldtdi+Uc(t)i(t)=CdtdUc
可以得到
U s ( t ) = L C d U c 2 d t 2 + U c {U_s}(t) = LC\frac{{dU_c^2}}{{d{t^2}}} + {U_c} Us(t)=LCdt2dUc2+Uc
两边进行拉普拉斯变换可以得到
G ( s ) = U c ( s ) U s ( s ) = 1 L C s 2 + 1 = 1 L C s 2 + 1 L C = 1 L C 1 L C s 2 + ( 1 L C ) 2 G(s) = \frac{{{U_c}(s)}}{{{U_s}(s)}} = \frac{1}{{LC{s^2} + 1}} = \frac{{\frac{1}{{LC}}}}{{{s^2} + \frac{1}{{LC}}}} = \frac{1}{{\sqrt {LC} }}\frac{{\frac{1}{{\sqrt {LC} }}}}{{{s^2} + {{(\frac{1}{{\sqrt {LC} }})}^2}}} G(s)=Us(s)Uc(s)=LCs2+11=s2+LC1LC1=LC 1s2+(LC 1)2LC 1
所以
g ( t ) = 1 L C sin ⁡ ( 1 L C t ) g(t) = \frac{1}{{\sqrt {LC} }}\sin (\frac{1}{{\sqrt {LC} }}t) g(t)=LC 1sin(LC 1t)
进行反拉式变换
g ( t ) = 1 L C sin ⁡ ( 1 L C t ) g(t) = \frac{1}{{\sqrt {LC} }}\sin (\frac{1}{{\sqrt {LC} }}t) g(t)=LC 1sin(LC 1t)

输入为直流电压源

U s ( t ) = U s < M 1 {U_s}(t) = {U_s} < {M_1} Us(t)=Us<M1
y ( t ) = ∫ 0 t 1 L C sin ⁡ ( 1 L C ( t − τ ) ) U s d τ = U s ( 1 − cos ⁡ ( 1 L C t ) ) y(t) = \int_0^t {\frac{1}{{\sqrt {LC} }}} \sin (\frac{1}{{\sqrt {LC} }}(t - \tau )){U_s}d\tau = {U_s}(1 - \cos (\frac{1}{{\sqrt {LC} }}t)) y(t)=0tLC 1sin(LC 1(tτ))Usdτ=Us(1cos(LC 1t))
lim ⁡ t → ∞ ∣ y ( t ) ∣ = lim ⁡ t → ∞ ∣ U s ( 1 − cos ⁡ ( 1 L C t ) ) ∣ < 2 U s = M \mathop {\lim }\limits_{t \to \infty } \left| {y(t)} \right| = \mathop {\lim }\limits_{t \to \infty } \left| {{U_s}(1 - \cos (\frac{1}{{\sqrt {LC} }}t))} \right| < 2{U_s} = M tlimy(t)=tlimUs(1cos(LC 1t))<2Us=M

此时满足 ∣ y ( t ) ∣ < M \left| {y(t)} \right| < M y(t)<M M M M为任意的正实数,因此该LC系统满足BIBO稳定。 L = 1 0 − 2 H , C = 1 0 − 5 C , U s = 10 V L = {10^{ - 2}}H,C = {10^{ - 5}}C,{U_s} = 10V L=102H,C=105C,Us=10V,仿真的电路图为:
在这里插入图片描述

图4 直流电源 LC电路仿真的电路图

仿真时间是6s,示波器输出的结果为:
在这里插入图片描述

图5 直流电压电源输入LC电路电压输出

从图中观察, y ( t ) y(t) y(t)有界,和上面的公式分析一致,此时有界输入能产生有界的输出。

输入为正弦波交流电压源

U s ( t ) = U s sin ⁡ ( w 1 t + φ ) < ∣ U s ∣ ≤ M 1 {U_s}(t) = {U_s}\sin ({w_1}t + \varphi ) < \left| {{U_s}} \right| \le {M_1} Us(t)=Ussin(w1t+φ)<UsM1
利用积化和差三角公式
y ( t ) = ∫ 0 t 1 L C sin ⁡ ( 1 L C ( t − τ ) ) U s sin ⁡ ( w 1 τ + φ ) d τ = ∫ 0 t U s L C sin ⁡ ( 1 L C ( t − τ ) ) sin ⁡ ( w 1 τ + φ ) d τ = ∫ 0 t U s 2 L C [ cos ⁡ ( 1 L C ( t − τ ) − ( w 1 τ + φ ) ) − cos ⁡ ( 1 L C ( t − τ ) + ( w 1 τ + φ ) ) ] d τ = ∫ 0 t U s 2 L C [ cos ⁡ ( − ( 1 L C + w 1 ) τ + 1 L C t − φ ) ) − cos ⁡ ( ( w 1 − 1 L C ) τ + 1 L C t + φ ) ) ] d τ = U s 2 L C [ 1 − ( 1 L C + w 1 ) sin ⁡ ( − ( 1 L C + w 1 ) τ + 1 L C t − φ ) ) − 1 ( w 1 − 1 L C ) sin ⁡ ( ( w 1 − 1 L C ) τ + 1 L C t + φ ) ) ] ∣ 0 t = U s 2 L C 1 − ( 1 L C + w 1 ) [ sin ⁡ ( − w 1 t − φ ) − sin ⁡ ( 1 L C t − φ ) ] + U s 2 L C 1 1 L C − w 1 [ sin ⁡ ( w 1 t + φ ) − sin ⁡ ( 1 L C t + φ ) ] y(t) = \int_0^t {\frac{1}{{\sqrt {LC} }}} \sin (\frac{1}{{\sqrt {LC} }}(t - \tau )){U_s}\sin ({w_1}\tau + \varphi )d\tau = \int_0^t {\frac{{{U_s}}}{{\sqrt {LC} }}\sin (\frac{1}{{\sqrt {LC} }}(t - \tau ))\sin ({w_1}\tau + \varphi )} d\tau \\ = \int_0^t {\frac{{{U_s}}}{{2\sqrt {LC} }}\left[ {\cos (\frac{1}{{\sqrt {LC} }}(t - \tau ) - ({w_1}\tau + \varphi )) - \cos (\frac{1}{{\sqrt {LC} }}(t - \tau ) + ({w_1}\tau + \varphi ))} \right]} d\tau \\ = \int_0^t {\frac{{{U_s}}}{{2\sqrt {LC} }}\left[ {\cos ( - (\frac{1}{{\sqrt {LC} }} + {w_1})\tau + \frac{1}{{\sqrt {LC} }}t - \varphi )) - \cos (({w_1} - \frac{1}{{\sqrt {LC} }})\tau + \frac{1}{{\sqrt {LC} }}t + \varphi ))} \right]} d\tau \\ = \left. {\frac{{{U_s}}}{{2\sqrt {LC} }}\left[ {\frac{1}{{ - (\frac{1}{{\sqrt {LC} }} + {w_1})}}\sin ( - (\frac{1}{{\sqrt {LC} }} + {w_1})\tau + \frac{1}{{\sqrt {LC} }}t - \varphi )) - \frac{1}{{({w_1} - \frac{1}{{\sqrt {LC} }})}}\sin (({w_1} - \frac{1}{{\sqrt {LC} }})\tau + \frac{1}{{\sqrt {LC} }}t + \varphi ))} \right]} \right|_0^t\\ = \frac{{{U_s}}}{{2\sqrt {LC} }}\frac{1}{{ - (\frac{1}{{\sqrt {LC} }} + {w_1})}}\left[ {\sin ( - {w_1}t - \varphi ) - \sin (\frac{1}{{\sqrt {LC} }}t - \varphi )} \right] + \frac{{{U_s}}}{{2\sqrt {LC} }}\frac{1}{{\frac{1}{{\sqrt {LC} }} - {w_1}}}\left[ {\sin ({w_1}t + \varphi ) - \sin (\frac{1}{{\sqrt {LC} }}t + \varphi )} \right] y(t)=0tLC 1sin(LC 1(tτ))Ussin(w1τ+φ)dτ=0tLC Ussin(LC 1(tτ))sin(w1τ+φ)dτ=0t2LC Us[cos(LC 1(tτ)(w1τ+φ))cos(LC 1(tτ)+(w1τ+φ))]dτ=0t2LC Us[cos((LC 1+w1)τ+LC 1tφ))cos((w1LC 1)τ+LC 1t+φ))]dτ=2LC Us[(LC 1+w1)1sin((LC 1+w1)τ+LC 1tφ))(w1LC 1)1sin((w1LC 1)τ+LC 1t+φ))]0t=2LC Us(LC 1+w1)1[sin(w1tφ)sin(LC 1tφ)]+2LC UsLC 1w11[sin(w1t+φ)sin(LC 1t+φ)]
根据和差化积的三角公式可以得到
y ( t ) = U s 2 L C 1 − ( 1 L C + w 1 ) [ sin ⁡ ( − w 1 t − φ ) − sin ⁡ ( 1 L C t − φ ) ] + U s 2 L C 1 1 L C − w 1 [ sin ⁡ ( w 1 t + φ ) − sin ⁡ ( 1 L C t + φ ) ] y(t) = \frac{{{U_s}}}{{2\sqrt {LC} }}\frac{1}{{ - (\frac{1}{{\sqrt {LC} }} + {w_1})}}\left[ {\sin ( - {w_1}t - \varphi ) - \sin (\frac{1}{{\sqrt {LC} }}t - \varphi )} \right] + \frac{{{U_s}}}{{2\sqrt {LC} }}\frac{1}{{\frac{1}{{\sqrt {LC} }} - {w_1}}}\left[ {\sin ({w_1}t + \varphi ) - \sin (\frac{1}{{\sqrt {LC} }}t + \varphi )} \right] y(t)=2LC Us(LC 1+w1)1[sin(w1tφ)sin(LC 1tφ)]+2LC UsLC 1w11[sin(w1t+φ)sin(LC 1t+φ)]
lim ⁡ t → ∞ ∣ y ( t ) ∣ = lim ⁡ t → ∞ ∣ U s ( 1 + w 1 L C ) + U s ( 1 − w 1 L C ) ∣ < ∣ U s ( 1 + w 1 L C ) ∣ + ∣ U s ( 1 − w 1 L C ) ∣ = M \mathop {\lim }\limits_{t \to \infty } \left| {y(t)} \right| = \mathop {\lim }\limits_{t \to \infty } \left| {\frac{{{U_s}}}{{(1 + {w_1}\sqrt {LC} )}} + \frac{{{U_s}}}{{(1 - {w_1}\sqrt {LC} )}}} \right|\\ < \left| {\frac{{{U_s}}}{{(1 + {w_1}\sqrt {LC} )}}} \right| + \left| {\frac{{{U_s}}}{{(1 - {w_1}\sqrt {LC} )}}} \right| = M tlimy(t)=tlim(1+w1LC )Us+(1w1LC )Us<(1+w1LC )Us+(1w1LC )Us=M

因此,输入有界的正弦交流电时,该系统的输出时有界的 L = 1 0 − 2 H , C = 1 0 − 2 C , U s = 20 sin ⁡ ( 1 0 2 t ) L = {10^{ - 2}}H,C = {10^{ - 2}}C,{U_s} = 20\sin ({10^2}t) L=102H,C=102C,Us=20sin(102t),仿真电路图为:
在这里插入图片描述

图6 交流电源 LC电路仿真的电路图

示波器输出结果
在这里插入图片描述

图7 交流电源输入LC电路电压输出

仿真的输出结果有界,和分析结果一致。

输入为sgn函数控制电压源

此时没有考虑到相同频率的情况,相同频率类似于并联分析
U s ( t ) = U s s g n ( sin ⁡ ( 1 L C ( t − τ ) ) ) < ∣ U s ∣ ≤ M 1 {U_s}(t) = {U_s}{\mathop{\rm sgn}} (\sin (\frac{1}{{\sqrt {LC} }}(t - \tau ))) < \left| {{U_s}} \right| \le {M_1} Us(t)=Ussgn(sin(LC 1(tτ)))<UsM1
利用积化和差三角公式
y ( t ) = ∫ 0 t 1 L C sin ⁡ ( 1 L C ( t − τ ) ) U s s g n ( sin ⁡ ( 1 L C ( t − τ ) ) ) d τ = ∫ 0 t ∣ U s L C sin ⁡ ( 1 L C ( t − τ ) ) ∣ d τ y(t) = \int_0^t {\frac{1}{{\sqrt {LC} }}} \sin (\frac{1}{{\sqrt {LC} }}(t - \tau )){U_s}{\mathop{\rm sgn}} (\sin (\frac{1}{{\sqrt {LC} }}(t - \tau )))d\tau = \int_0^t {\left| {\frac{{{U_s}}}{{\sqrt {LC} }}\sin (\frac{1}{{\sqrt {LC} }}(t - \tau ))} \right|} d\tau y(t)=0tLC 1sin(LC 1(tτ))Ussgn(sin(LC 1(tτ)))dτ=0tLC Ussin(LC 1(tτ))dτ
[ t 2 π L C ] \left[ {\frac{t}{{2\pi \sqrt {LC} }}} \right] [2πLC t]表示 t 2 π L C \frac{t}{{2\pi \sqrt {LC} }} 2πLC t 向下取整
lim ⁡ t → ∞ ∣ y ( t ) ∣ \mathop {\lim }\limits_{t \to \infty } \left| {y(t)} \right| tlimy(t) 不是有界,有界的输入不能产生有界的输出,该系统非BIBO稳定 L = 1 0 − 2 H , C = 1 0 − 2 C , L = {10^{ - 2}}H,C = {10^{ - 2}}C, L=102H,C=102C,用方波进行仿真,仿真电路图为:
在这里插入图片描述

图8 方波控制电压源LC电路仿真的电路图

示波器输出结果
在这里插入图片描述

图9 方波控制电压源输入LC电路电压输出

方波仿真的输出结果有界,方波并不是sgn函数信号,在仿真中我不知如何构造sgn函数,或者说这个输入信号已经改变系统的结构,可能不存在。

三、对并联的LC电路进行分析

输出时电容电压 U c {U_c} Uc,输入是电源电流 I s {I_s} Is,电容大小为 C C C,电感为 L L L
U c ( t ) = L d i L d t i c ( t ) = C d U c d t i c ( t ) + i c ( t ) = I s \begin{array}{l} {U_c}(t) = L\frac{{d{i_L}}}{{dt}}\\ {i_c}(t) = C\frac{{d{U_c}}}{{dt}}\\ {i_c}(t) + {i_c}(t) = {I_s} \end{array} Uc(t)=LdtdiLic(t)=CdtdUcic(t)+ic(t)=Is
可以得到
C d U c d t + ∫ 0 t U c L d t = I s C\frac{{d{U_c}}}{{dt}} + \int_0^t {\frac{{{U_c}}}{L}dt} = {I_s} CdtdUc+0tLUcdt=Is
两边进行拉普拉斯变换可以得到
s C U c ( s ) + U c ( s ) s L = I ( s ) sC{U_c}(s) + \frac{{{U_c}(s)}}{{sL}} = I(s) sCUc(s)+sLUc(s)=I(s)

所以
G ( s ) = U c ( s ) I s ( s ) = s L s 2 C L + 1 = 1 c s s 2 + 1 C L G(s) = \frac{{{U_c}(s)}}{{{I_s}(s)}} = \frac{{sL}}{{{s^2}CL + 1}} = \frac{1}{c}\frac{s}{{{s^2} + \frac{{\rm{1}}}{{CL}}}} G(s)=Is(s)Uc(s)=s2CL+1sL=c1s2+CL1s
进行反拉式变换
g ( t ) = 1 C cos ⁡ ( 1 L C t ) g(t) = \frac{1}{C}\cos (\frac{1}{{\sqrt {LC} }}t) g(t)=C1cos(LC 1t)
输入为交流电流源
I s ( t ) = I s sin ⁡ ( w t ) < M 1 {I_s}(t) = {I_s}\sin (wt) < {M_1} Is(t)=Issin(wt)<M1
I s ( s ) = I s w s 2 + w 2 {I_s}(s) = {I_s}\frac{w}{{{s^2} + {w^2}}} Is(s)=Iss2+w2w
y ( s ) = I s w s 2 + w 2 1 c s s 2 + 1 C L y(s) = {I_s}\frac{w}{{{s^2} + {w^2}}}\frac{1}{c}\frac{s}{{{s^2} + \frac{1}{{CL}}}} y(s)=Iss2+w2wc1s2+CL1s

w 2 = 1 C L {w^2} = \frac{1}{{CL}} w2=CL1时,反拉氏变换
y ( t ) = − I s 2 t sin ⁡ 1 L C t y(t) = - \frac{{{I_s}}}{2}t\sin \frac{1}{{\sqrt {LC} }}t y(t)=2IstsinLC 1t

t → ∞ t \to \infty t的时候, y ( t ) = I s 2 t sin ⁡ 1 L C t y(t) = \frac{{{I_s}}}{2}t\sin \frac{1}{{\sqrt {LC} }}t y(t)=2IstsinLC 1t为振幅趋向于无穷的正弦震荡,因此输出无界,满足题目要求,系统不再BIBO稳定.
L = 1 H , C = 1 C , I s = sin ⁡ t L = 1H,C = 1C,{I_s} = \sin t L=1H,C=1C,Is=sint,仿真的电路图为:
在这里插入图片描述

图10 交流电流源 LC并联电路仿真的电路图

仿真时间是600s,示波器输出的结果为:
在这里插入图片描述

图11 交流电流源 LC并联电路输入电压输出

从图中观察, y ( t ) y(t) y(t)输出无界,和上面的公式分析一致,此时有界输入能产生无界的输出,输入信号是正弦信号,频率满足 w = 1 / L C w = 1/\sqrt {LC} w=1/LC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值