BIBO稳定和李亚普诺夫稳定之间的关系——第六次作业


声明:本人特别菜,不研究相关的方向,差点挂科,这个作业的内容仅供交流。

题目

用实例分析BIBO稳定和李亚普诺夫稳定之间的关系

解答思路:

BIBO稳定的定义

L T I LTI LTI系统 y ( t ) = ∫ 0 t g ( t − τ ) u ( τ ) d τ y(t) = \int_0^t {g(t - \tau )u(\tau )d\tau } y(t)=0tg(tτ)u(τ)dτ,若任一有界输入引起有界的输出,则称系统“ B I B O BIBO BIBO”稳定。该稳定性定义针对零输入响应,且仅适用于初始松弛系统。

李亚普诺夫稳定定义

若任一有界的初始状态 引起有界的响应,则 的响应为“临界稳定”或“李亚普诺夫稳定”。若任一有界的初始状态引起有界的响应,并且该有界响应随着 而趋向于0,则 的响应为“渐近稳定”。

分析

B I B O BIBO BIBO稳定的充分必要条件, g ( s ) g(s) g(s)的任一极点均具有负实部,或者等价描述为极点位于左半平面。 B I B O BIBO BIBO稳定是从传递函数上得到的稳定性分析,是外部稳定。此时系统内部不一定是稳定的,系统中不能观的状态可能发散。
线性系统 x ˙ ( t ) = A x ( t ) \dot x(t) = Ax(t) x˙(t)=Ax(t)渐近稳定的充要条件是对任意正定矩阵 Q Q Q,李亚普诺夫方程 A T P + P A = − Q {A^T}P + PA = - Q ATP+PA=Q 有唯一正定解。

探究:系统是李亚普诺夫稳定(只考虑渐近稳定),系统是否是 B I B O BIBO BIBO稳定

线性系统 x ˙ ( t ) = A x ( t ) \dot x(t) = Ax(t) x˙(t)=Ax(t)渐近稳定的充要条件是对任意正定矩阵 ,李亚普诺夫方程 A T P + P A = − Q {A^T}P + PA = - Q ATP+PA=Q有唯一正定解。
A T P + P A = − Q {A^T}P + PA = - Q ATP+PA=Q 两边左右同乘 e A T τ , e A τ {e^{{A^T}\tau }},{e^{A\tau }} eATτ,eAτ
e A T τ A T P e A τ + e A T τ P A e A τ = − e A T τ Q e A τ {e^{{A^T}\tau }}{A^T}P{e^{A\tau }} + {e^{{A^T}\tau }}PA{e^{A\tau }} = - {e^{{A^T}\tau }}Q{e^{A\tau }} eATτATPeAτ+eATτPAeAτ=eATτQeAτ,两边求积分
∫ 0 ∞ d e A T τ P e A τ d τ = ∫ 0 ∞ − e A T τ Q e A τ d τ \int_0^\infty {\frac{{d{e^{{A^T}\tau }}P{e^{A\tau }}}}{{d\tau }} = } \int_0^\infty { - {e^{{A^T}\tau }}Q{e^{A\tau }}} d\tau 0dτdeATτPeAτ=0eATτQeAτdτ
e A T τ P e A τ ∣ 0 ∞ = ∫ 0 ∞ − e A T τ Q e A τ d τ \left. {{e^{{A^T}\tau }}P{e^{A\tau }}} \right|_0^\infty = \int_0^\infty { - {e^{{A^T}\tau }}Q{e^{A\tau }}} d\tau eATτPeAτ 0=0eATτQeAτdτ
P = ∫ 0 ∞ e A T τ Q e A τ d τ P = \int_0^\infty {{e^{{A^T}\tau }}Q{e^{A\tau }}} d\tau P=0eATτQeAτdτ

根据课本第五章5.4节的内容,有定理如下:
定理一:方程 x ˙ ( t ) = A x ( t ) \dot x(t) = Ax(t) x˙(t)=Ax(t)渐近稳定,当且仅当 A A A 的所有特征值均具有负实部
定理二: B I B O BIBO BIBO稳定等价于传递函数 G ( s ) G(s) G(s)的极点均具有负实部,即需要系统能控能观部分的特征值具有负实部。其中 x ˙ ( t ) = A x ( t ) \dot x(t) = Ax(t) x˙(t)=Ax(t)渐近稳定需要的条件更强。
可以用下图表示:

在这里插入图片描述
| 图1 BIBO稳定和李亚普诺夫稳定关系图 |
|–|–|

结论:系统是李亚普诺夫稳定(只考虑渐近稳定),系统是BIBO稳定的。系统是BIBO稳定不能推导到李亚普诺夫稳定。

定理一证明:

直接证明比较复杂,根据李亚普诺夫定理得到,李亚普诺夫渐近稳定等价于存在正定对称矩阵 P > 0 P > 0 P>0,使得 A T P + P A < 0 {A^T}P + PA < 0 ATP+PA<0,因此证明: A A A矩阵的特征根均具有负实部等价于存在正定对称矩阵 P > 0 P > 0 P>0,使得 A T P + P A < 0 {A^T}P + PA < 0 ATP+PA<0

充分性:

在复数域上进行讨论,在 C m {C^m} Cm中定义新的内积 ⟨ x , y ⟩ = x T P y ˉ \langle {x,y} \rangle = {x^T}P\bar y x,y=xTPyˉ。任意 λ ∈ σ ( A ) \lambda \in \sigma (A) λσ(A) x ≠ 0 x \ne 0 x=0 A A A 的对应于 的特征矢量,即 A x = λ x Ax = \lambda x Ax=λx ,则
⟨ A x , x ⟩ + ⟨ x , A x ⟩ = x T A T P x ˉ + x T P A ˉ x ˉ = x T ( A T P + P A ) x ˉ = − x T Q x ˉ < 0 \begin{array}{l} \left\langle {Ax,x} \right\rangle + \left\langle {x,Ax} \right\rangle \\ = {x^T}{A^T}P\bar x + {x^T}P\bar A\bar x\\ = {x^T}({A^T}P + PA)\bar x\\ = - {x^T}Q\bar x < 0 \end{array} Ax,x+x,Ax=xTATPxˉ+xTPAˉxˉ=xT(ATP+PA)xˉ=xTQxˉ<0

⟨ A x , x ⟩ + ⟨ x , A x ⟩ = ⟨ λ x , x ⟩ + ⟨ x , λ x ⟩ = λ x T P x ˉ + x T P λ ˉ x ˉ = ( λ + λ ˉ ) x T P x ˉ = 2 R e λ ∗ x T P x ˉ \begin{array}{l} \left\langle {Ax,x} \right\rangle + \left\langle {x,Ax} \right\rangle \\ = \left\langle {\lambda x,x} \right\rangle + \left\langle {x,\lambda x} \right\rangle \\ = \lambda {x^T}P\bar x + {x^T}P\bar \lambda \bar x\\ = (\lambda + \bar \lambda ){x^T}P\bar x\\ = 2{R_e}\lambda *{x^T}P\bar x \end{array} Ax,x+x,Ax=λx,x+x,λx=λxTPxˉ+xTPλˉxˉ=(λ+λˉ)xTPxˉ=2ReλxTPxˉ
所以 2 R e λ ∗ x T P x ˉ = − x T Q x ˉ < 0 2{R_e}\lambda *{x^T}P\bar x = - {x^T}Q\bar x < 0 2ReλxTPxˉ=xTQxˉ<0,则 R e λ < 0 {R_e}\lambda < 0 Reλ<0,即 λ ∈ C − \lambda \in {C^ - } λC

必要性:

设对称矩阵 Q > 0 Q > 0 Q>0 ,令 P = ∫ 0 + ∞ e A T t Q e A t d t P = \int_0^{ + \infty } {{e^{{A^T}t}}Q{e^{At}}} dt P=0+eATtQeAtdt ,显然有 P > 0 P > 0 P>0 ,且
A T P + P A = A T ∫ 0 + ∞ e A T t Q e A t A d t = ∫ 0 + ∞ ( A T e A T t Q e A t + e A T t Q e A t A ) d t = ∫ 0 + ∞ d ( e A T t Q e A t ) d t = e A T t Q e A t ∣ 0 + ∞ \begin{array}{l} {A^T}P + PA = {A^T}\int_0^{ + \infty } {{e^{{A^T}t}}Q{e^{At}}Adt} \\ = \int_0^{ + \infty } {({A^T}{e^{{A^T}t}}Q{e^{At}} + {e^{{A^T}t}}Q{e^{At}}A)dt} \\ = \int_0^{ + \infty } {d({e^{{A^T}t}}Q{e^{At}})dt} \\ = \left. {{e^{{A^T}t}}Q{e^{At}}} \right|_0^{ + \infty } \end{array} ATP+PA=AT0+eATtQeAtAdt=0+(ATeATtQeAt+eATtQeAtA)dt=0+d(eATtQeAt)dt=eATtQeAt 0+

因为 σ ( A ) ⊂ C − \sigma (A) \subset {C^ - } σ(A)C ,则 lim ⁡ t → ∞ e A T t = 0 \mathop {\lim }\limits_{t \to \infty } {e^{{A^T}t}} = 0 tlimeATt=0 ,因此有:
A T P + P A = − Q < 0 {A^T}P + PA = - Q < 0 ATP+PA=Q<0

定理二证明:

充分性:

a 11 ( s − p 1 ) + a 12 ( s − p 1 ) 2 + ⋯ + a 1 r 1 ( s − p q ) r 1 ⏟ p 1 − r 1 + ⋯ + a q 1 ( s − p q ) + ⋯ + a q r q ( s − p q ) r q ⏟ p q − r g \underbrace {\frac{{{a_{11}}}}{{(s - {p_1})}} + \frac{{{a_{12}}}}{{{{(s - {p_1})}^2}}} + \cdots + \frac{{{a_{1{r_1}}}}}{{{{(s - {p_q})}^{{r_1}}}}}}_{{p_1} - {r_1}} + \cdots + \underbrace {\frac{{{a_{q1}}}}{{(s - {p_q})}} + \cdots + \frac{{{a_{q{r_q}}}}}{{{{(s - {p_q})}^{{r_q}}}}}}_{{p_q} - {r_g}} p1r1 (sp1)a11+(sp1)2a12++(spq)r1a1r1++pqrg (spq)aq1++(spq)rqaqrq
进行反拉氏变换
g ( t ) = a 11 e p 1 t + a 12 t e p 1 t + ⋯ + a 1 r 1 t r 1 − 1 e p 1 t + ⋯ + a q 1 e p q t + ⋯ + a q r q t r g − 1 e p q t g(t) = {a_{11}}{e^{{p_1}t}} + {a_{12}}t{e^{{p_1}t}} + \cdots + {a_{1{r_1}}}{t^{{r_1} - 1}}{e^{{p_1}t}} + \cdots + {a_{q1}}{e^{{p_q}t}} + \cdots + {a_{q{r_q}}}{t^{{r_g} - 1}}{e^{{p_q}t}} g(t)=a11ep1t+a12tep1t++a1r1tr11ep1t++aq1epqt++aqrqtrg1epqt
p 1 , ⋯   , p q {p_1}, \cdots ,{p_q} p1,,pq 任意一个极点有正实部, g ( t ) g(t) g(t)显然发散,不符合 B I B O BIBO BIBO稳定的条件,
p 1 , ⋯   , p q {p_1}, \cdots ,{p_q} p1,,pq任意一个极点中含有有纯虚根 p i {p_i} pi时, p i {p_i} pi是重根的时候, t e p i t t{e^{{p_i}t}} tepit项显然发散,不符合 B I B O BIBO BIBO稳定的条件。当 p i {p_i} pi是单根的时候, e p i t {e^{{p_i}t}} epit项显然震荡,无法满足绝对可积的条件,因此, B I B O BIBO BIBO稳定可以得到 p 1 , ⋯   , p q {p_1}, \cdots ,{p_q} p1,,pq任意极点位于 s s s平面的左半平面。

必要性:

p 1 , ⋯   , p q {p_1}, \cdots ,{p_q} p1,,pq任意极点位于 s s s平面的左半平面,
g ( t ) = a 11 e p 1 t + a 12 t e p 1 t + ⋯ + a 1 r 1 t r 1 − 1 e p 1 t + ⋯ + a q 1 e p q t + ⋯ + a q r q t r g − 1 e p q t g(t) = {a_{11}}{e^{{p_1}t}} + {a_{12}}t{e^{{p_1}t}} + \cdots + {a_{1{r_1}}}{t^{{r_1} - 1}}{e^{{p_1}t}} + \cdots + {a_{q1}}{e^{{p_q}t}} + \cdots + {a_{q{r_q}}}{t^{{r_g} - 1}}{e^{{p_q}t}} g(t)=a11ep1t+a12tep1t++a1r1tr11ep1t++aq1epqt++aqrqtrg1epqt
具有负实部,每一项都收敛
∣ y ( t ) ∣ = ∣ ∫ t 0 t g ( t , τ ) u ( τ ) d τ ∣ ≤ ∫ t 0 t ∣ g ( t , τ ) ∣ d τ ≤ M \left| {y(t)} \right| = \left| {\int_{{t_0}}^t {g(t,\tau )u(\tau )d\tau } } \right| \le \int_{{t_0}}^t {\left| {g(t,\tau )} \right|d\tau } \le M y(t)= t0tg(t,τ)u(τ)dτ t0tg(t,τ)dτM
可证,定理一成立。

实列仿真分析:

我们可以分析得到李亚普诺夫渐进稳定包含 B I B O BIBO BIBO稳定。
可以去找不满足李亚普诺夫渐进稳定,满足 B I B O BIBO BIBO稳定的例子,即该不收敛的状态变量不属于能控能观就可以。
x ˙ = [ 1 0 0 − 1 ] x + [ 1 1 ] u y = [ 0 1 ] x \begin{array}{l} \dot x = \left[ {\begin{matrix}{} 1&0\\ 0&{ - 1} \end{matrix}} \right]x + \left[ {\begin{matrix}{} 1\\ 1 \end{matrix}} \right]u\\ y = \left[ {\begin{matrix}{} 0&1 \end{matrix}} \right]x \end{array} x˙=[1001]x+[11]uy=[01]x
计算传递函数
G ( s ) = C ( s I − A ) − 1 B + D = [ 0 1 ] [ 1 s − 1 0 0 1 s + 1 ] [ 1 1 ] = 1 s + 1 G(s) = C{(sI - A)^{ - 1}}B + D = \left[ {\begin{matrix}{} 0&1 \end{matrix}} \right]\left[ {\begin{matrix}{} {\frac{1}{{s - 1}}}&0\\ 0&{\frac{1}{{s + 1}}} \end{matrix}} \right]\left[ {\begin{matrix}{} 1\\ 1 \end{matrix}} \right] = \frac{1}{{s + 1}} G(s)=C(sIA)1B+D=[01][s1100s+11][11]=s+11

根据极点位于左半平面可以判断,该系统BIBO稳定
系统矩阵 A A A的特征值为 1 1 1 − 1 -1 1不是都具有负实部,因此不符合李亚普诺夫渐进稳定。
输入为阶跃响应时 u ( t ) = 2 u(t) = 2 u(t)=2,输出
y = [ 0 1 ] ( [ e t 0 0 e − t ] [ x 1 ( 0 ) x 2 ( 0 ) ] + ∫ 0 t [ e t − τ 0 0 e − t + τ ] [ 1 1 ] 2 d τ ) = 2 − 2 e − t x = [ e t 0 0 e − t ] [ x 1 ( 0 ) x 2 ( 0 ) ] + ∫ 0 t [ e t − τ 0 0 e − t + τ ] [ 1 1 ] 2 d τ = [ − 2 + 2 e t 2 − 2 e − t ] \begin{array}{l} y = \left[ {\begin{matrix}{} 0&1 \end{matrix}} \right]\left( {\left[ {\begin{matrix}{} {{e^t}}&0\\ 0&{{e^{ - t}}} \end{matrix}} \right]\left[ {\begin{matrix}{} {{x_1}(0)}\\ {{x_2}(0)} \end{matrix}} \right] + \int_0^t {\left[ {\begin{matrix}{} {{e^{t - \tau }}}&0\\ 0&{{e^{ - t + \tau }}} \end{matrix}} \right]\left[ {\begin{matrix}{} 1\\ 1 \end{matrix}} \right]2d\tau } } \right) = 2 - 2{e^{ - t}}\\ x = \left[ {\begin{matrix}{} {{e^t}}&0\\ 0&{{e^{ - t}}} \end{matrix}} \right]\left[ {\begin{matrix}{} {{x_1}(0)}\\ {{x_2}(0)} \end{matrix}} \right] + \int_0^t {\left[ {\begin{matrix}{} {{e^{t - \tau }}}&0\\ 0&{{e^{ - t + \tau }}} \end{matrix}} \right]\left[ {\begin{matrix}{} 1\\ 1 \end{matrix}} \right]2d\tau } = \left[ {\begin{matrix}{} { - 2 + 2{e^t}}\\ {2 - 2{e^{ - t}}} \end{matrix}} \right] \end{array} y=[01]([et00et][x1(0)x2(0)]+0t[etτ00et+τ][11]2dτ)=22etx=[et00et][x1(0)x2(0)]+0t[etτ00et+τ][11]2dτ=[2+2et22et]
零输入响应
x ( 0 ) = [ x 1 ( 0 ) x 2 ( 0 ) ] = [ 1 1 ] x(0) = \left[ {\begin{matrix}{} {{x_1}(0)}\\ {{x_2}(0)} \end{matrix}} \right] = \left[ {\begin{matrix}{} 1\\ 1 \end{matrix}} \right] x(0)=[x1(0)x2(0)]=[11]

y = [ 0 1 ] ( [ e t 0 0 e − t ] [ x 1 ( 0 ) x 2 ( 0 ) ] + ∫ 0 t [ e t − τ 0 0 e − t + τ ] [ 1 1 ] 0 d τ ) = e − t x = [ e t 0 0 e − t ] [ x 1 ( 0 ) x 2 ( 0 ) ] + ∫ 0 t [ e t − τ 0 0 e − t + τ ] [ 1 1 ] 0 d τ = [ e t e − t ] \begin{array}{l} y = \left[ {\begin{matrix}{} 0&1 \end{matrix}} \right]\left( {\left[ {\begin{matrix}{} {{e^t}}&0\\ 0&{{e^{ - t}}} \end{matrix}} \right]\left[ {\begin{matrix}{} {{x_1}(0)}\\ {{x_2}(0)} \end{matrix}} \right] + \int_0^t {\left[ {\begin{matrix}{} {{e^{t - \tau }}}&0\\ 0&{{e^{ - t + \tau }}} \end{matrix}} \right]\left[ {\begin{matrix}{} 1\\ 1 \end{matrix}} \right]0d\tau } } \right) = {e^{ - t}}\\ x = \left[ {\begin{matrix}{} {{e^t}}&0\\ 0&{{e^{ - t}}} \end{matrix}} \right]\left[ {\begin{matrix}{} {{x_1}(0)}\\ {{x_2}(0)} \end{matrix}} \right] + \int_0^t {\left[ {\begin{matrix}{} {{e^{t - \tau }}}&0\\ 0&{{e^{ - t + \tau }}} \end{matrix}} \right]\left[ {\begin{matrix}{} 1\\ 1 \end{matrix}} \right]0d\tau } = \left[ {\begin{matrix}{} {{e^t}}\\ {{e^{ - t}}} \end{matrix}} \right] \end{array} y=[01]([et00et][x1(0)x2(0)]+0t[etτ00et+τ][11]0dτ)=etx=[et00et][x1(0)x2(0)]+0t[etτ00et+τ][11]0dτ=[etet]

从计算结果中可以看出,零输入响应不能观的状态变量 x 1 {x_1} x1 发散,因此整个系统不是李亚普诺夫渐进稳定。在零状态响应中,满足输入有界输出有界,符合 B I B O BIBO BIBO稳定的条件。计算结果和上面的零极点分析的结果也是相符的。

仿真

将上述系统放入sinmulink仿真,分别就零输入响应和零状态响应进行仿真
在这里插入图片描述
| 图2 sinmulink系统仿真图 |
|–|–|

仿真时间为6s,仿真结果如下图所示:
在这里插入图片描述
| 图3 零状态响应 y = x 2 = 2 − 2 e − t y = {x_2} = 2 - 2{e^{ - t}} y=x2=22et的仿真结果 |
|–|–|

在这里插入图片描述
| 图4 零状态响应 x 1 = − 2 + 2 e t {x_1} = - 2 + 2{e^t} x1=2+2et的仿真结果 |
|–|–|

在这里插入图片描述
| 图5 零输入响应 y = x 2 = e − t y = {x_2} = {e^{ - t}} y=x2=et的仿真结果 |
|–|–|

在这里插入图片描述
| 图6 零输入响应 x 1 = e t {x_1} = {e^t} x1=et的仿真结果 |
|–|–|

仿真结果和计算结果一致,该系统不是李亚普诺夫渐近稳定,有界输入有界输出符合 B I B O BIBO BIBO稳定,和分析李亚普诺夫渐进稳定和 B I B O BIBO BIBO关系相符。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值