布朗运动 2 | 布朗运动的推广

5.4 最大值与首中时的分布特性

{ B ( t ) , t ≥ 0 } \{B(t),t\ge0\} {B(t),t0} 是标准布朗运动,不妨设 B ( 0 ) = 0 B(0)=0 B(0)=0

定义:首次击中 a a a 的时间 τ a = inf ⁡ { t : t ≥ 0 , B ( t ) = a } \tau_a=\inf\{t:t\ge0,B(t)=a\} τa=inf{t:t0,B(t)=a}

定义:对 ∀ t > 0 , M ( t ) = max ⁡ 0 ≤ u ≤ t B ( u ) \forall t > 0, M(t)=\max_{0\le u\le t}B(u) t>0,M(t)=max0utB(u) 表示 [ 0 , t ] [0,t] [0,t] 上的最大值。

a > 0 a > 0 a>0 时,显然存在等价关系 { τ a ≤ t } = { M ( t ) ≥ a } \{\tau_a \le t\} = \{M(t) \ge a\} {τat}={M(t)a},因此有 P ( τ a ≤ t ) = P ( M ( t ) ≥ a ) P(\tau_a \le t) = P(M(t) \ge a) P(τat)=P(M(t)a)

Remark:事实上,这与泊松过程中定义的 { S n ≤ t } = { N ( t ) ≥ n } \{S_n\le t\} = \{N(t)\ge n\} {Snt}={N(t)n} 类似。主要差别在于泊松过程中讨论离散点情况,这里讨论连续情况。

定理 5.6:对任意 a > 0 a>0 a>0 M ( t ) M(t) M(t) τ a \tau_a τa 的分布密度函数分别为
f M ( t ) ( a ) = 2 π t e − a 2 / 2 t I [ 0 , ∞ ) ( a ) f τ a ( t ) = a 2 π e − a 2 / 2 t t − 3 / 2 , t > 0 \begin{aligned} f_{M(t)}(a) &= \sqrt{\frac{2}{\pi t}} e^{-a^2/ 2t} I_{[0,\infty)}(a) \\ f_{\tau_a}(t) &= \frac{a}{\sqrt{2\pi}} e^{-a^2/2t} t^{-3/2}, \quad t > 0 \end{aligned} fM(t)(a)fτa(t)=πt2 ea2/2tI[0,)(a)=2π aea2/2tt3/2,t>0
τ a \tau_a τa 的 Laplace 变换为 E [ exp ⁡ ( − s τ a ) ] = e − 2 s a ,   s > 0 {\mathbb E}[\exp(-s\tau_a)] = e^{-\sqrt{2s}a}, ~ s>0 E[exp(sτa)]=e2s a, s>0

证明: P ( B ( t ) ≥ a ) = P ( B ( t ≥ a ∣ τ a ≤ t ) ) P ( τ a ≤ t ) P(B(t)\ge a) = P(B(t\ge a | \tau_a \le t))P(\tau_a \le t) P(B(t)a)=P(B(taτat))P(τat),由于 P ( B ( t ) ≥ a ) ∣ τ a ≤ t ) = P ( B ( t ) < a ) ∣ τ a ≤ t ) = 1 / 2 P(B(t)\ge a) | \tau_a\le t) = P(B(t)< a) | \tau_a\le t)=1/2 P(B(t)a)τat)=P(B(t)<a)τat)=1/2,因此可以得到 P ( M ( t ) ≥ a ) = P ( τ a ≤ t ) = 2 P ( B ( t ) ≥ a ) = 2 2 π t ∫ a ∞ e − x 2 / 2 t d x P(M(t)\ge a) = P(\tau_a \le t) = 2P(B(t)\ge a)=\frac{2}{\sqrt{2\pi t}}\int_a^{\infty} e^{-x^2 / 2t}dx P(M(t)a)=P(τat)=2P(B(t)a)=2πt 2aex2/2tdx。于是 f M ( t ) ( a ) = d ( 1 − P ( M ( t ) ≥ a ) ) / d a f_{M(t)}(a)={d(1-P(M(t)\ge a))} / {da} fM(t)(a)=d(1P(M(t)a))/da f τ a ( t ) = d ( P ( τ a ≤ t ) ) / d a f_{\tau_a}(t) = d(P(\tau_a \le t)) / da fτa(t)=d(P(τat))/da,证毕。

利用上述定理可以到如下结果:

  1. τ a \tau_a τa 几乎处处有限,即 P ( τ a < ∞ ) = 1 P(\tau_a < \infty)=1 P(τa<)=1
  2. E τ a = ∞ {\mathbb E}\tau_a = \infty Eτa=

证明:1) P ( τ a < ∞ ) = lim ⁡ t → ∞ = P ( τ a ≤ t ) = lim ⁡ t → ∞ 2 2 π ∫ a / t ∞ e − u 2 / 2 d u = 1 P(\tau_a<\infty) = \lim_{t\to\infty}=P(\tau_a \le t) = \lim_{t\to\infty} \frac{2}{\sqrt{2\pi}}\int_{a/\sqrt{t}}^{\infty} e^{-u^2/2}du = 1 P(τa<)=limt=P(τat)=limt2π 2a/t eu2/2du=1;2) E [ exp ⁡ ( − s τ a ) ] = e − 2 s a {\mathbb E}[\exp(-s\tau_a)]=e^{-\sqrt{2s}a} E[exp(sτa)]=e2s a,两边对 s s s 求导得到 E [ τ a exp ⁡ ( − s τ a ) ] = 2 2 a s − 1 / 2 e − 2 s a {\mathbb E}[\tau_a \exp(-s\tau_a)] = \frac{\sqrt{2}}{2} a s^{-1/2} e^{-\sqrt{2s}a} E[τaexp(sτa)]=22 as1/2e2s a,令 s → 0 s\to 0 s0 即可得到 E τ a = ∞ {\mathbb E}\tau_a = \infty Eτa=,证毕。

栗子 5.1

定理 5.7:设 { B ( t ) } \{B(t)\} {B(t)} 为标准布朗运动, ∀ a > 0 , y ≥ 0 \forall a > 0, y\ge0 a>0,y0 P ( B ( t ) ≤ a − y , M ( t ) ≥ a ) = P ( B ( t ) ≥ a + y ) P(B(t)\le a-y, M(t)\ge a) = P(B(t) \ge a+y) P(B(t)ay,M(t)a)=P(B(t)a+y)

证明:根据反射性定义 B ∗ ( t ) = 2 a − B ( t ) B^{\ast}(t) = 2a-B(t) B(t)=2aB(t),则有 τ a = τ a ∗ = inf ⁡ { B ∗ ( t ) = a } \tau_a = \tau^{\ast}_a = \inf\{B^{\ast}(t)=a\} τa=τa=inf{B(t)=a},又由于 { M ( t ) ≥ a } = { τ a ≤ t } \{M(t)\ge a\} = \{\tau_a \le t\} {M(t)a}={τat},于是有
P ( B ( t ) ≤ a − y , M ( t ) ≥ a ) = P ( B ( t ) ≤ a − y , τ a ≤ t ) = P ( B ∗ ( t ) ≤ a − y , τ a ≤ t ) = P ( B ( t ) ≥ a + y , τ a ≤ t ) = P ( B ( t ) ≥ a + y ) \begin{aligned} P(B(t)\le a-y, M(t)\ge a) &= P(B(t)\le a-y, \tau_a\le t) \\ &= P(B^{\ast}(t) \le a-y, \tau_a \le t) \\ &= P(B(t) \ge a+y, \tau_a\le t) \\ &= P(B(t)\ge a+y) \end{aligned} P(B(t)ay,M(t)a)=P(B(t)ay,τat)=P(B(t)ay,τat)=P(B(t)a+y,τat)=P(B(t)a+y)
推论 5.7.1:设 { B ( t ) } \{B(t)\} {B(t)} 为标准布朗运动, ∀ a > 0 \forall a > 0 a>0 P ( M ( t ) ≥ a ) = 2 P ( B ( t ) ≥ a ) = P ( ∣ B ( t ) ∣ ≥ a ) P(M(t)\ge a) = 2P(B(t)\ge a) = P(|B(t)|\ge a) P(M(t)a)=2P(B(t)a)=P(B(t)a).

推论 5.7.2 ∀ ξ > 0 , x ≤ ξ \forall \xi > 0, x\le\xi ξ>0,xξ M ( t ) M(t) M(t) B ( t ) B(t) B(t) 的联合分布密度函数为 f M , B ( ξ , x ) = 2 π ( 2 ξ − x t 3 / 2 ) exp ⁡ ( − ( 2 ξ − x ) 2 / 2 t ) I [ 0 , ∞ ) ( ξ ) I ( − ∞ , ξ ] ( x ) f_{M,B}(\xi,x) = \sqrt{\frac{2}{\pi} }(\frac{2\xi-x}{t^{3/2} }) \exp(-(2\xi-x)^2/2t) I_{[0,\infty)}(\xi)I_{(-\infty,\xi]}(x) fM,B(ξ,x)=π2 (t3/22ξx)exp((2ξx)2/2t)I[0,)(ξ)I(,ξ](x).

5.5 过零点的反正弦定理

∀ t 1 < t 2 \forall t_1 < t_2 t1<t2,记事件 o ( t 1 , t 2 ) = { ∃ t ∈ ( t 1 , t 2 ) , B ( t ) = 0 } o(t_1,t_2)=\{\exists t\in(t_1,t_2), B(t)=0\} o(t1,t2)={t(t1,t2),B(t)=0},利用全概率公式有
P ( o ( t 1 , t 2 ) ) = ∫ − ∞ ∞ P ( o ( t 1 , t 2 ) ∣ B ( t 1 ) = x ) 1 2 π t 1 e − x 2 / 2 t 1 d x P(o(t_1,t_2)) = \int_{-\infty}^{\infty} P(o(t_1,t_2) | B(t_1)=x) \frac{1}{\sqrt{2\pi t_1} }e^{-x^2/2t_1} dx P(o(t1,t2))=P(o(t1,t2)B(t1)=x)2πt1 1ex2/2t1dx
利用布朗运动的连续性和对称性有
P ( o ( t 1 , t 2 ) ∣ B ( t 1 ) = x ) = P ( τ x ≤ t 2 − t 1 ) = 2 2 π ( t 2 − t 1 ) ∫ x ∞ e − u 2 / 2 ( t 2 − t 1 ) d u P(o(t_1,t_2)|B(t_1)=x) = P(\tau_x\le t_2-t_1) = \frac{2}{\sqrt{2\pi(t_2-t_1)} }\int_x^{\infty} e^{-u^2/2(t_2-t_1)} du P(o(t1,t2)B(t1)=x)=P(τxt2t1)=2π(t2t1) 2xeu2/2(t2t1)du
于是有
P ( o ( t 1 , t 2 ) ) = π t 1 ( t 2 − t 1 ) ∫ 0 ∞ ∫ x ∞ e − y 2 2 ( t 2 − t 1 ) d y ⋅ e − x 2 2 t 1 d x P(o(t_1,t_2)) = \frac{}{\pi\sqrt{t_1(t_2-t_1)} }\int_0^{\infty}\int_x^{\infty} e^{-\frac{y^2}{2(t_2-t_1)} }dy \cdot e^{-\frac{x^2}{2t_1} }dx P(o(t1,t2))=πt1(t2t1) 0xe2(t2t1)y2dye2t1x2dx
这个积分的直接求解非常困难,为求此积分,采用另外的方法,也即反正弦定理。

定理 5.8(反正弦定理):设 B ( t ) B(t) B(t) 是标准布朗运动,记 o ˉ ( t 1 , t 2 ) = { B ( t ) ≠ 0 , ∀ t ∈ ( t 1 , t 2 ) } \bar{o}(t_1,t_2)=\{B(t)\ne 0,\forall t\in(t_1,t_2)\} oˉ(t1,t2)={B(t)=0,t(t1,t2)},则 P ( o ˉ ( t 1 , t 2 ) ) = 2 π arcsin ⁡ t 1 t 2 P(\bar{o}(t_1,t_2))=\frac{2}{\pi} \arcsin\sqrt{\frac{t_1}{t_2} } P(oˉ(t1,t2))=π2arcsint2t1 ,且当 t 1 = x t , t 2 = t , 0 < x < 1 t_1=xt, t_2=t, 0 < x < 1 t1=xt,t2=t,0<x<1 时,有 P ( o ˉ ( x t , t ) ) = 2 π arcsin ⁡ x P(\bar{o}(xt,t))=\frac{2}{\pi} \arcsin \sqrt{x} P(oˉ(xt,t))=π2arcsinx .

Remark:这说明布朗运动处处连续但处处不可导。

5.6 布朗运动的推广

5.6.1 带吸收点的布朗运动

Z ( t ) = { B ( t ) , t < τ x x , t ≥ τ x Z(t)=\begin{cases}B(t), & t < \tau_x \\ x, & t\ge \tau_x \end{cases} Z(t)={B(t),x,t<τxtτx,为求 Z ( t ) Z(t) Z(t) 的分布,不妨设 x > 0 x > 0 x>0

(1)当 y > x y > x y>x 时, P ( Z ( t ) ≤ y ) = 1 P(Z(t) \le y)=1 P(Z(t)y)=1

(2)当 y = x y=x y=x 时, P ( Z ( t ) = x ) = P ( τ x ≤ t ) = 2 2 π t ∫ x ∞ e − u 2 / 2 t d u P(Z(t)=x) = P(\tau_x\le t) = \frac{2}{\sqrt{2\pi t} }\int_x^\infty e^{-u^2/2t} du P(Z(t)=x)=P(τxt)=2πt 2xeu2/2tdu

(3)当 y < x y < x y<x 时,

5.6.2 原点反射的布朗运动

5.6.3 几何布朗运动

W ( t ) = e B ( t ) W(t)=e^{B(t)} W(t)=eB(t),称它为几何布朗运动,取 B ( t ) B(t) B(t) 的矩母函数 ϕ ( s ) = E [ e s B ( t ) ] \phi(s)={\mathbb E}[e^{sB(t)}] ϕ(s)=E[esB(t)],则 ϕ ( s ) = e t s 2 / 2 \phi(s)=e^{ts^2/2} ϕ(s)=ets2/2,因此 E [ W ( t ) ] = ϕ ( 1 ) = e t / 2 {\mathbb E}[W(t)]=\phi(1)=e^{t/2} E[W(t)]=ϕ(1)=et/2 D [ W ( t ) ] = E [ W 2 ( t ) ] − ( E [ W ( t ) ] ) 2 = ϕ ( 2 ) − e t = e 2 t − e t D[W(t)] = {\mathbb E}[W^2(t)]-({\mathbb E}[W(t)])^2=\phi(2)-e^t = e^{2t}-e^t D[W(t)]=E[W2(t)](E[W(t)])2=ϕ(2)et=e2tet.

栗子 5.2:考虑股票市场收益率, S 0 , S n S_0,S_n S0,Sn 分别表示最初价位和最终价位, S n = S 0 e B ( t 1 ) − B ( t 0 ) ⋯ e B ( t n ) − B ( t n − 1 ) S_n=S_0 e^{B(t_1)-B(t_0)}\cdots e^{B(t_n)-B(t_{n-1})} Sn=S0eB(t1)B(t0)eB(tn)B(tn1).

5.6.4 布朗运动的积分

S ( t ) = ∫ 0 t B ( u ) d u S(t)=\int_0^t B(u)du S(t)=0tB(u)du,根据正态分布的性质知道他是正态过程, E S ( t ) = 0 {\mathbb E}S(t)=0 ES(t)=0 ∀ 0 ≤ δ ≤ t \forall 0\le \delta \le t 0δt,有
cov ⁡ [ S ( δ ) , S ( t ) ] = E [ ∫ 0 δ ∫ 0 t B ( u ) B ( v ) d u d v ] = ∫ 0 δ ∫ 0 t ( u ∧ v ) d u d v = δ 2 2 ( t − δ 3 ) \operatorname{cov}[S(\delta),S(t)] = {\mathbb E}[\int_0^\delta\int_0^t B(u)B(v)dudv] = \int_0^\delta\int_0^t(u\wedge v)dudv=\frac{\delta^2}{2}(t-\frac{\delta}{3}) cov[S(δ),S(t)]=E[0δ0tB(u)B(v)dudv]=0δ0t(uv)dudv=2δ2(t3δ)

5.6.5 布朗运动的形式导数

考虑增量比,固定 Δ t > 0 \Delta t > 0 Δt>0,令 B ( t + Δ t ) − B ( t ) Δ t = Δ B ( t ) Δ t \frac{B(t+\Delta t)-B(t)}{\Delta t} = \frac{\Delta B(t)}{\Delta t} ΔtB(t+Δt)B(t)=ΔtΔB(t)

5.7 布朗桥与经验分布

5.7.1 布朗桥的基本概念与性质

定义 { B ( t ) , t ≥ 0 } \{B(t),t\ge0\} {B(t),t0} 为标准布朗运动,不妨设 B ( 0 ) = 0 B(0)=0 B(0)=0,令 B 00 ( t ) = B ( t ) − t B ( 1 ) B_{00}(t)=B(t)-tB(1) B00(t)=B(t)tB(1),则称 { B 00 ( t ) , 0 ≤ t ≤ 1 } \{B_{00}(t), 0\le t\le 1\} {B00(t),0t1}布朗桥

根据其定义,可以得到基本性质如下:

  1. B 00 ( 0 ) = B 00 ( 1 ) = 0 B_{00}(0)=B_{00}(1)=0 B00(0)=B00(1)=0;(??)
  2. E [ B 00 ( t ) ] = E [ B ( t ) − t B ( 1 ) ] = 0 {\mathbb E}[B_{00}(t)]={\mathbb E}[B(t)-tB(1)]=0 E[B00(t)]=E[B(t)tB(1)]=0
  3. D [ B 00 ( t ) ] = E [ B 00 2 ( t ) ] = t ( 1 − t ) D[B_{00}(t)]={\mathbb E}[B_{00}^2(t)]=t(1-t) D[B00(t)]=E[B002(t)]=t(1t)
  4. s ≤ t s\le t st cov ⁡ [ B 00 ( s ) , B 00 ( t ) ] = s ( 1 − t ) \operatorname{cov}[B_{00}(s),B_{00}(t)]=s(1-t) cov[B00(s),B00(t)]=s(1t)
  5. { B 00 ( t ) , 0 ≤ t ≤ 1 } \{B_{00}(t),0\le t\le1 \} {B00(t),0t1} 的分布与 { B ( t ) , t ≥ 0 } \{B(t), t\ge0 \} {B(t),t0} B ( 1 ) = 0 B(1)=0 B(1)=0 下的条件分布相同。

5.7.2 经验分布与布朗桥的关系

工程统计中,经常独立抽取多个样本 X 1 , . . . , X n X_1,...,X_n X1,...,Xn 来统计某参量的统计特性,定义经验分布 F ^ n ( x ) = 1 n ∑ i = 1 n I { X i ≤ x } \hat{F}_n(x) = \frac{1}{n}\sum_{i=1}^n I_{\{X_i\le x\} } F^n(x)=n1i=1nI{Xix}。假设 X 1 , . . . , X n X_1,...,X_n X1,...,Xn 独立同分布,且 X n ∼ F ( x ) X_n\sim F(x) XnF(x),则有:

  1. E [ F ^ n ( x ) ] = F ( x ) {\mathbb E}[\hat{F}_n(x)] = F(x) E[F^n(x)]=F(x)
  2. Var ⁡ [ F ^ n ( x ) ] = 1 n F ( x ) ( 1 − F ( x ) ) \operatorname{Var}[\hat{F}_n(x)]=\frac{1}{n}F(x)(1-F(x)) Var[F^n(x)]=n1F(x)(1F(x))
  3. 任意给定 x x x,利用强大数定理得到 任意给定 x x x,利用强大数定理得到 P ( lim ⁡ n → ∞ F ^ n ( x ) = F ( x ) ) = 1 P(\lim_{n\to\infty} \hat{F}_n(x)=F(x))=1 P(limnF^n(x)=F(x))=1
  4. 任意给定 x x x,利用中心极限定理得到 n → ∞ n\to\infty n 时有(依分布收敛)

∑ i = 1 n ( I { X i ≤ x } − F ( x ) ) n F ( x ) ( 1 − F ( x ) ) = d N ( 0 , 1 ) \frac{\sum_{i=1}^n (I_{\{X_i\le x\} }-F(x)) }{\sqrt{nF(x)(1-F(x))} } \overset{d}{=} {\mathcal N}(0,1) nF(x)(1F(x)) i=1n(I{Xix}F(x))=dN(0,1)

证明:(2) Var ⁡ [ F ^ n ( x ) ] = E [ F ^ n ( x ) 2 ] − F ( x ) 2 = 1 n 2 E [ ∑ i = 1 n I { X i ≤ x } ∑ j = 1 n I { X j ≤ x } ] \operatorname{Var}[\hat{F}_n(x)]={\mathbb E}[\hat{F}_n(x)^2] - F(x)^2 = \frac{1}{n^2}{\mathbb E}[\sum_{i=1}^n I_{\{X_i\le x\} } \sum_{j=1}^n I_{\{X_j\le x\} } ] Var[F^n(x)]=E[F^n(x)2]F(x)2=n21E[i=1nI{Xix}j=1nI{Xjx}],展开化简就可以得到性质 2.

(4)记 G n ( x ) = n ( F ^ n ( x ) − F ( x ) ) G_n(x)=\sqrt{n}(\hat{F}_n(x)-F(x)) Gn(x)=n (F^n(x)F(x)),容易证明 E G n ( x ) = 0 , Var ⁡ G n ( x ) = F ( x ) ( 1 − F ( x ) ) {\mathbb E}G_n(x)=0,\operatorname{Var}G_n(x)=F(x)(1-F(x)) EGn(x)=0,VarGn(x)=F(x)(1F(x)),特别的,根据中心极限定理,当 n → ∞ n\to\infty n 时有 G n ( x ) = d G ( x ) G_n(x)\overset{d}{=}G(x) Gn(x)=dG(x),其中 G ( x ) ∼ N ( 0 , F ( x ) ( 1 − F ( x ) ) ) G(x)\sim {\mathcal N}(0,F(x)(1-F(x))) G(x)N(0,F(x)(1F(x)))

引理 5.1:如果 x 1 < x 2 x_1 < x_2 x1<x2,则 E [ G n ( x 1 ) G n ( x 2 ) ] = F ( x 1 ) ( 1 − F ( x 2 ) ) {\mathbb E}[G_n(x_1)G_n(x_2)] = F(x_1)(1-F(x_2)) E[Gn(x1)Gn(x2)]=F(x1)(1F(x2))

证明:代入展开化简即可得到。

Remark:根据上述引理和 G n ( x ) G_n(x) Gn(x) 的性质可知,当 F n ( x ) = x F_n(x)=x Fn(x)=x 时,即 X 1 , . . . , X n X_1,...,X_n X1,...,Xn 服从 [ 0 , 1 ] [0,1] [0,1] 上的均匀分布时, G n ( x ) G_n(x) Gn(x) 的极限分别 G ( x ) G(x) G(x) 是布朗桥。

事实上,对于一般的连续分布函数 F ( x ) F(x) F(x) G n ( x ) G_n(x) Gn(x) 的极限分布 G ( x ) G(x) G(x) 也可以用布朗桥表示。为此,首先给出如下引理。

引理 5.2:随机变量 X X X 的分布函数 F ( x ) F(x) F(x) 连续,则 Y = F ( X ) Y=F(X) Y=F(X) 是一个 [ 0 , 1 ] [0,1] [0,1] 均匀分布的随机变量。

证明: ∀ y ∈ [ 0 , 1 ] \forall y\in[0,1] y[0,1],定义 x = inf ⁡ { u : F ( u ) ≥ y } x=\inf\{u:F(u)\ge y\} x=inf{u:F(u)y},因此有 P ( F ( X ) ≥ y ) ) = P ( Y ≥ y ) = 1 − F ( x ) = 1 − y P(F(X)\ge y)) = P(Y\ge y)=1-F(x)=1-y P(F(X)y))=P(Yy)=1F(x)=1y,从而有 P ( Y < y ) = y P(Y< y) = y P(Y<y)=y,证毕。

基于引理 5.2,可以定义 G # ( x ) = B 00 ( F ( x ) ) G^{\#}(x)=B_{00}(F(x)) G#(x)=B00(F(x)),利用布朗桥性质有 G # ( x ) G^{\#}(x) G#(x) G ( x ) G(x) G(x) 有相同的分布特性,从而可以推得 G n ( x ) G_n(x) Gn(x) 的极限分布为以 F ( x ) F(x) F(x) 为参变量的布朗桥。

5.7.3 经验分布的误差估计

略。

5.8 带漂移的布朗运动

定义:设 { B ( t ) , t ≥ 0 } \{B(t),t\ge0\} {B(t),t0} 为标准布朗运动,记 X ( t ) = B ( t ) + η t X(t)=B(t)+\eta t X(t)=B(t)+ηt,其中 η \eta η 为常数,称 { X ( t ) , t ≥ 0 } \{X(t),t\ge0\} {X(t),t0} 为带漂移的布朗运动。

5.8.1 移出区间的概率计算

定理 5.9:对任意 A > 0 , B > 0 A > 0, B > 0 A>0,B>0,定义停时 τ = inf ⁡ { t : X ( t ) = A   o r   X ( t ) = − B } \tau=\inf\{t:X(t)=A ~ or ~ X(t)=-B \} τ=inf{t:X(t)=A or X(t)=B},则 P A = P ( X ( τ ) = A ) = e 2 η B − 1 e 2 η B − e 2 η a P_{A}=P(X(\tau)=A) = \frac{e^{2\eta B}-1}{e^{2\eta B}-e^{2\eta a} } PA=P(X(τ)=A)=e2ηBe2ηae2ηB1.

5.8.2 首中时问题

5.9 布朗运动的轨道性质

轨道处处连续,几乎处处不可导

定理:标准布朗运动 B ( t ) B(t) B(t),对任意的 t ≥ 0 t\ge0 t0,有
P ( lim ⁡ h → 0 sup ⁡ ∣ B ( t + h ) − B ( t ) h ∣ = + ∞ ) = 1 P(\lim_{h\to 0}\sup\left|\frac{B(t+h)-B(t)}{h}\right|=+\infty) = 1 P(h0limsuphB(t+h)B(t)=+)=1
证明:略。

最后给我的博客打个广告,欢迎光临
https://glooow1024.github.io/
https://glooow.gitee.io/

前面的一些博客链接如下
泛函分析专栏
高等数值分析专栏
随机过程专栏
随机过程1 绪论
随机过程2 平稳过程与二阶矩
离散鞅论1 | 基本概念
离散鞅论2 | 停时与停时定理
离散鞅论3 | 鞅论应用
泊松过程1 | 定义与基本性质
泊松过程2 | 泊松过程扩展
布朗运动 1 | 基本概念与性质
布朗运动 2 | 布朗运动的推广
马尔可夫过程1 | 基本概念
马尔可夫过程2 | 状态空间
连续参数马尔可夫链

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Matlab 是一种流行的数学软件,用于进行各种数学计算和模拟。布朗运动是一种随机漂移的过程,在Matlab中可以使用随机性质和数学模型来模拟。 在Matlab中,可以使用随机数生成器来模拟布朗运动。首先,我们需要定义一个初始位置和时间步长。然后,通过生成随机数来模拟每个时间步长中的移动距离。这里使用的随机数遵循正态分布,模拟布朗粒子在每个时间步长中的随机运动。 下面是一个简单的Matlab代码用于模拟布朗运动: ```Matlab % 定义初始位置和时间步长 initial_position = 0; time_step = 0.1; num_steps = 1000; % 生成随机数(遵循正态分布) random_numbers = randn(num_steps, 1); % 初始化轨迹数组 trajectory = zeros(num_steps, 1); trajectory(1) = initial_position; % 模拟布朗运动 for i = 2:num_steps trajectory(i) = trajectory(i-1) + sqrt(time_step) * random_numbers(i); end % 绘制布朗运动轨迹 plot(trajectory) xlabel('时间步长') ylabel('位置') title('布朗运动模拟') ``` 运行以上代码,可以得到一个布朗运动的轨迹图。轨迹图展示了粒子在随机时间步长内的位置变化情况。 Matlab提供了丰富的数学函数和图形绘制工具,可以进一步优化和扩展布朗运动模拟。可以使用不同的随机数生成器、调整时间步长和模拟步数、添加噪声等,以更准确地模拟布朗运动。 总而言之,Matlab可以很方便地进行布朗运动模拟,只需使用随机数生成器和数学模型即可。这使得研究者和工程师可以更好地理解和分析布朗运动以及其他随机漂移过程的行为和特征。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值