泊松过程1 | 定义与基本性质

4.1 泊松过程的定义与基本性质

定义 4.1:随机过程 { N ( t ) , t ≥ 0 } \{N(t),t\ge0\} {N(t),t0} 称为时齐泊松过程,若满足下列条件:

  1. 他是一个计数过程,且 N ( 0 ) = 0 N(0)=0 N(0)=0
  2. (独立增量)任取 0 < t 1 < t 2 < ⋯ < t n 0 < t_1 < t_2 < \cdots < t_n 0<t1<t2<<tn N ( t 1 ) , N ( t 2 ) − N ( t 1 ) , . . . , N ( t n ) − N ( t n − 1 ) N(t_1),N(t_2)-N(t_1),...,N(t_n)-N(t_{n-1}) N(t1),N(t2)N(t1),...,N(tn)N(tn1) 相互独立;
  3. (平稳增量) ∀ s , t ≥ 0 , n ≥ 0 \forall s,t\ge0,n\ge0 s,t0,n0 P ( N ( s + t ) − N ( s ) = n ) = P ( N ( t ) = n ) P(N(s+t)-N(s)=n) = P(N(t)=n) P(N(s+t)N(s)=n)=P(N(t)=n)
  4. 对任意 t > 0 t>0 t>0 和充分小的 Δ t > 0 \Delta t>0 Δt>0,有 P ( N ( t + Δ t ) − N ( t ) = 1 ) = λ Δ t + o ( Δ t ) P(N(t+\Delta t)-N(t)=1) = \lambda \Delta t + o(\Delta t) P(N(t+Δt)N(t)=1)=λΔt+o(Δt) P ( N ( t + Δ t ) − N ( t ) ≥ 2 ) = o ( Δ t ) P(N(t+\Delta t)-N(t)\ge 2)=o(\Delta t) P(N(t+Δt)N(t)2)=o(Δt)

其中 λ > 0 \lambda>0 λ>0 称为强度常数, o ( Δ t ) o(\Delta t) o(Δt) 为高阶无穷小。

定义 4.2:计数过程 { N ( t ) , t ≥ 0 } \{N(t),t\ge0\} {N(t),t0},被称为参数为 λ \lambda λ 的时齐泊松过程,若满足如下条件:

  1. N ( 0 ) = 0 N(0)=0 N(0)=0
  2. 它是独立增量过程;
  3. ∀ s , t ≥ 0 , N ( s + t ) − N ( s ) \forall s,t\ge0,N(s+t)-N(s) s,t0,N(s+t)N(s) 是参数为 λ t \lambda t λt 的泊松分布,即 P ( N ( t + s ) − N ( s ) = k ) = ( λ t ) k k ! e − λ t P(N(t+s)-N(s)=k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t} P(N(t+s)N(s)=k)=k!(λt)keλt

两种定义是等价的。

基本性质:

  1. 均值 E [ N ( t ) ] = λ t {\mathbb E}[N(t)] = \lambda t E[N(t)]=λt
  2. 方差 var ( N ( t ) ) = E [ ( N ( t ) − λ t ) 2 ] = λ t \text{var}(N(t)) = {\mathbb E}[(N(t)-\lambda t)^2] = \lambda t var(N(t))=E[(N(t)λt)2]=λt
  3. 特征函数 ϕ N ( t ) ( x ) = E [ exp ⁡ ( − j N ( t ) x ) ] = exp ⁡ ( − λ t e j x ) \phi_{N(t)}(x) = {\mathbb E}[\exp(-j N(t)x)] = \exp(-\lambda t e^{jx}) ϕN(t)(x)=E[exp(jN(t)x)]=exp(λtejx)
  4. E [ N ( t ) 2 ] = ( λ t ) 2 + λ t {\mathbb E}[N(t)^2] = (\lambda t)^2 + \lambda t E[N(t)2]=(λt)2+λt
  5. 自相关函数 R ( t + τ , t ) = E [ N ( t + τ ) N ( t ) ] = ( λ t ) 2 + λ t + λ 2 t τ , ( τ > 0 ) R(t+\tau,t) = {\mathbb E}[N(t+\tau)N(t)] = (\lambda t)^2 + \lambda t + \lambda^2 t\tau,(\tau>0) R(t+τ,t)=E[N(t+τ)N(t)]=(λt)2+λt+λ2tτ,(τ>0)(非平稳过程)

栗子 4.1 { N ( t ) , t ≥ 0 } \{N(t), t\ge0\} {N(t),t0} 是参数为 λ \lambda λ 的时齐泊松过程, S 0 = 0 , S n S_0=0,S_n S0=0,Sn 为第 n n n 个事件发生的时刻,则 N ( t ) N(t) N(t) 关于 { S n , n ≥ 0 } \{S_n,n\ge0\} {Sn,n0} 不是停时,但是 N ( t ) + 1 N(t)+1 N(t)+1 关于 { S n , n ≥ 0 } \{S_n,n\ge0\} {Sn,n0} 是停时。

证明: { N ( t ) = n }    ⟺    { S n ≤ t < S n + 1 } = { S n ≤ t } − { S n + 1 ≤ t } \{N(t)=n\} \iff \{S_n\le t < S_{n+1} \}=\{S_n\le t \} - \{S_{n+1}\le t \} {N(t)=n}{Snt<Sn+1}={Snt}{Sn+1t},因此 { N ( t ) = n } \{N(t)=n\} {N(t)=n} 可以由 { S 0 , . . . , S n + 1 } \{S_0,...,S_{n+1} \} {S0,...,Sn+1} 构成的事件表示,因此 N ( t ) + 1 N(t)+1 N(t)+1 关于 { S n , n ≥ 0 } \{S_n,n\ge0\} {Sn,n0} 是停时。

4.2 泊松过程与指数分布的关系

N ( t ) , t ≥ 0 N(t),t\ge0 N(t),t0 是计数过程,令 S 0 = 0 , S n S_0=0,S_n S0=0,Sn 表示第 n n n 个事件发生的时刻, X n = S n − S n − 1 X_n=S_n-S_{n-1} Xn=SnSn1 表示第 n n n 个与第 n − 1 n-1 n1 个事件之间的间隔,于是有 S n = inf ⁡ { t : N ( t ) = n } , n ≥ 1 S_n=\inf\{t:N(t)=n \},n\ge1 Sn=inf{t:N(t)=n},n1。相应的 N ( t ) N(t) N(t) 可以表示为 N ( t ) = ∑ n = 1 ∞ I [ 0 , t ] ( S n ) N(t)=\sum_{n=1}^{\infty} I_{[0,t]}(S_n) N(t)=n=1I[0,t](Sn)

P ( S n ≤ t ) = P ( N ( t ) ≥ n ) = 1 − e − λ t ∑ k = 0 n − 1 ( λ t ) k k ! P(S_n \le t) = P(N(t)\ge n) = 1-e^{-\lambda t} \sum_{k=0}^{n-1} \frac{(\lambda t)^k}{k!} P(Snt)=P(N(t)n)=1eλtk=0n1k!(λt)k,特别当 n = 1 n=1 n=1 时,有 P ( S 1 ≤ t ) = P ( X 1 ≤ t ) = 1 − e − λ t P(S_1\le t) = P(X_1\le t) = 1-e^{-\lambda t} P(S1t)=P(X1t)=1eλt,即 X 1 ∼ E ( λ ) X_1\sim E(\lambda) X1E(λ) 是参数为 λ \lambda λ 的指数分布。同样的可以得到 X n ( n ≥ 2 ) X_n(n\ge2) Xn(n2) 也服从指数分布,均值为 1 / λ 1/\lambda 1/λ,方差为 1 / λ 2 1/\lambda^2 1/λ2

定理 4.1:计数过程是泊松过程的充要条件 { X n , n ≥ 1 } \{X_n,n\ge1\} {Xn,n1} 是独立的同指数分布

证明:略。

4.3 到达时间的条件分布

4.3.1 到达时间的条件分布

定理 4.2:设 N ( t ) , t ≥ 0 N(t),t\ge0 N(t),t0 是泊松过程,则对 ∀ 0 < s < t \forall 0< s < t 0<s<t P ( X 1 ≤ s ∣ N ( t ) = 1 ) = s / t P(X_1\le s | N(t)=1) = s/t P(X1sN(t)=1)=s/t

证明: P ( X 1 ≤ s ∣ N ( t ) = 1 ) = P ( X 1 ≤ s , N ( t ) = 1 ) / P ( N ( t ) = 1 ) = P ( N ( s ) = 1 , N ( t ) − N ( s ) = 0 ) / P ( N ( t ) = 1 ) P(X_1\le s | N(t)=1) = P(X_1\le s, N(t)=1) / P(N(t)=1) = P(N(s)=1, N(t)-N(s)=0) / P(N(t)=1) P(X1sN(t)=1)=P(X1s,N(t)=1)/P(N(t)=1)=P(N(s)=1,N(t)N(s)=0)/P(N(t)=1)

定理 4.3:设 N ( t ) , t ≥ 0 N(t),t\ge0 N(t),t0 是泊松过程,则对 ∀ 0 < s < t , k ≤ n \forall 0< s < t,k\le n 0<s<t,kn P ( S k ≤ s ∣ N ( t ) = n ) = ∑ l = k n n ! l ! ( n − l ) ! ( s t ) l ( 1 − s t ) n − l P(S_k \le s | N(t)=n) = \sum_{l=k}^n \frac{n!}{l!(n-l)!}(\frac{s}{t})^l (1-\frac{s}{t})^{n-l} P(SksN(t)=n)=l=knl!(nl)!n!(ts)l(1ts)nl。特别当 k = n k=n k=n 时,有 P ( S n ≤ s ∣ N ( t ) = n ) = ( s t ) n P(S_n\le s | N(t)=n) = (\frac{s}{t})^n P(SnsN(t)=n)=(ts)n

证明:略。

4.3.2 顺序统计量

Y 1 , . . . , Y n Y_1,...,Y_n Y1,...,Yn n n n 个随机变量,如果 Y ( k ) Y_{(k)} Y(k) Y 1 , . . . , Y n Y_1,...,Y_n Y1,...,Yn 中第 k k k 个最小的随机变量,我们称 Y ( 1 ) , . . . , Y ( n ) Y_{(1)},...,Y_{(n)} Y(1),...,Y(n) 是关于 Y 1 , . . . , Y n Y_1,...,Y_n Y1,...,Yn 的顺序统计量。如果 Y 1 , . . . , Y n Y_1,...,Y_n Y1,...,Yn 是独立同分布的连续随机变量,其概率密度分布为 f ( y ) f(y) f(y),则 Y ( 1 ) , . . . , Y ( n ) Y_{(1)},...,Y_{(n)} Y(1),...,Y(n) 的联合分布概率密度函数为
f ( y 1 , . . . , y n ) = n ! Π k = 1 n f ( y k ) ,   y 1 < y 2 < ⋯ < y n f(y_1,...,y_n) = n! \Pi_{k=1}^n f(y_k), ~ y_1 < y_2 < \cdots < y_n f(y1,...,yn)=n!Πk=1nf(yk), y1<y2<<yn
特别的,当 Y 1 , . . . , Y n Y_1,...,Y_n Y1,...,Yn ( 0 , t ) (0,t) (0,t) 上独立的均匀分布随机变量时,相应的顺序统计量 Y ( 1 ) , . . . , Y ( n ) Y_{(1)},...,Y_{(n)} Y(1),...,Y(n) 的联合分布概率密度函数为
f ( y 1 , . . . , y n ) = n ! / t n ,   0 < y 1 < y 2 < ⋯ < y n < t f(y_1,...,y_n) = n! / t^n, ~ 0< y_1 < y_2 < \cdots < y_n < t f(y1,...,yn)=n!/tn, 0<y1<y2<<yn<t
定理 4.4:设 N ( t ) , t ≥ 0 N(t),t\ge0 N(t),t0 为泊松过程,则在已给 N ( t ) = n N(t)=n N(t)=n 时事件相继发生的时间 S 1 , . . . , S n S_1,...,S_n S1,...,Sn 的条件概率密度为
f ( t 1 , t 2 , . . . , t n ) = { n ! / t n , 0 < t 1 < t 2 < ⋯ < t n 0 , o t h e r s f(t_1,t_2,...,t_n) = \begin{cases}n!/t^n, & 0< t_1 < t_2 < \cdots < t_n \\ 0, & others \end{cases} f(t1,t2,...,tn)={n!/tn,0,0<t1<t2<<tnothers
证明:对任取的 0 = t 0 < t 1 < t 2 < ⋯ < t n < t n + 1 = t 0=t_0 < t_1 < t_2 < \cdots < t_n < t_{n+1}=t 0=t0<t1<t2<<tn<tn+1=t,取 h 0 = h n + 1 = 0 h_0=h_{n+1}=0 h0=hn+1=0 及充分小的 h i h_i hi,则
P ( t i < S i ≤ t i + h i , 1 ≤ i ≤ n ∣ N ( t ) = n ) = P ( N ( t i + h i ) − N ( t i ) = 1 , 1 ≤ i ≤ n ,   N ( t j + 1 ) − N ( t j + h j ) = 0 , 1 ≤ j ≤ n ) P ( N ( t ) = n ) = n ! t n h 1 h 2 ⋯ h n \begin{aligned} &P(t_i < S_i \le t_i+h_i, 1\le i\le n | N(t)=n) \\ =& \frac{P(N(t_i+h_i)-N(t_i)=1,1\le i\le n, ~ N(t_{j+1})-N(t_j+h_j)=0, 1\le j\le n)}{P(N(t)=n)} \\ =& \frac{n!}{t^n} h_1 h_2 \cdots h_n \end{aligned} ==P(ti<Siti+hi,1inN(t)=n)P(N(t)=n)P(N(ti+hi)N(ti)=1,1in, N(tj+1)N(tj+hj)=0,1jn)tnn!h1h2hn
取极限即可得证。

Remark:上述定理表明,若非负函数 g ( x 1 , . . . , x n ) g(x_1,...,x_n) g(x1,...,xn) 是关于 x i , i = 1 , . . . , n x_i, i=1,...,n xi,i=1,...,n 的对称函数,即对任意一种排列模式 ϕ \phi ϕ,有 g ( x 1 , . . . , x n ) = g ( x ϕ ( 1 ) , x ϕ ( 2 ) , . . . , x ϕ ( n ) ) g(x_1,...,x_n) = g(x_{\phi(1)}, x_{\phi(2)},..., x_{\phi(n)}) g(x1,...,xn)=g(xϕ(1),xϕ(2),...,xϕ(n))(也就是函数值与各分量的顺序无关),则在概率分布的意义上下列等式成立
g ( S 1 , . . . , S n ∣ N ( t ) = n ) = d g ( Y ( 1 ) , . . . , Y ( n ) ) = g ( Y 1 , . . . , Y n ) g(S_1,...,S_n|N(t)=n) \overset{d}{=} g(Y_{(1)},...,Y_{(n)}) = g(Y_1,...,Y_n) g(S1,...,SnN(t)=n)=dg(Y(1),...,Y(n))=g(Y1,...,Yn)
其中 Y 1 , . . . , Y n Y_1,...,Y_n Y1,...,Yn ( 0 , t ) (0,t) (0,t) 上独立的均匀分布随机变量。

栗子 4.2:设某工地有一工程任务,工人到达工地遵照参数为 λ \lambda λ 的泊松流,求在时刻 t t t 工人完成的总的工程量的期望值。

解:设第 i i i 个工人到达工地的时刻为 S i S_i Si,在 [ 0 , t ] [0,t] [0,t] 内工人完成的总工程量为 S ( t ) = ∑ i = 1 N ( t ) ( t − S i ) S(t)=\sum_{i=1}^{N(t)}(t-S_i) S(t)=i=1N(t)(tSi)。有 E [ S ( t ) ∣ N ( t ) = n ] = n t − E [ ∑ i = 1 n S i ∣ N ( t ) = n ] = n t − E [ ∑ j = 1 n Y j ∣ N ( t ) = n ] = n t / 2 {\mathbb E}[S(t) | N(t)=n] = nt - {\mathbb E}[\sum_{i=1}^n S_i | N(t)=n]=nt - {\mathbb E}[\sum_{j=1}^n Y_j | N(t)=n]=nt/2 E[S(t)N(t)=n]=ntE[i=1nSiN(t)=n]=ntE[j=1nYjN(t)=n]=nt/2,于是 E [ S ( t ) ] = E [ E [ S ( t ) ∣ N ( t ) = n ] ] = λ t 2 / 2 {\mathbb E}[S(t)] = {\mathbb E}[{\mathbb E}[S(t) | N(t)=n]] = \lambda t^2/2 E[S(t)]=E[E[S(t)N(t)=n]]=λt2/2.

定理 4.5:设 N ( t ) , t ≥ 0 N(t),t\ge0 N(t),t0 是参数为 λ \lambda λ 的泊松过程, S k , k ≥ 1 S_k,k\ge1 Sk,k1 为到达时刻,则对任意的 [ 0 , + ∞ ) [0,+\infty) [0,+) 上可积函数 f f f E [ ∑ n = 1 ∞ f ( S n ) ] = λ ∫ 0 ∞ f ( s ) d s {\mathbb E}[\sum_{n=1}^{\infty} f(S_n)] = \lambda\int_0^\infty f(s)ds E[n=1f(Sn)]=λ0f(s)ds.

证明:当 t ≥ 0 t\ge0 t0 时,有 { S n ≤ t } = { N ( t ) ≥ n } \{S_n\le t\}=\{N(t)\ge n\} {Snt}={N(t)n},因此有 P ( S n ≤ t ) = P ( N ( t ) ≥ n ) = ∑ j = n ∞ ( λ t ) j j ! e − λ t P(S_n\le t)=P(N(t)\ge n) = \sum_{j=n}^\infty \frac{(\lambda t)^j}{j!} e^{-\lambda t} P(Snt)=P(N(t)n)=j=nj!(λt)jeλt,求导得到 S n S_n Sn 的概率密度为 f S n ( t ) = λ ( λ t ) n − 1 ( n − 1 ) ! e − λ t I { t ≥ 0 } f_{S_n}(t)=\lambda \frac{(\lambda t)^{n-1}}{(n-1)!} e^{-\lambda t}I_{\{t\ge0\}} fSn(t)=λ(n1)!(λt)n1eλtI{t0},因此 E [ f ( S n ) ] = λ ∫ 0 ∞ f ( s ) ( λ s ) n − 1 ( n − 1 ) ! e − λ s d s {\mathbb E}[f(S_n)] = \lambda \int_0^\infty f(s)\frac{(\lambda s)^{n-1}}{(n-1)!} e^{-\lambda s} ds E[f(Sn)]=λ0f(s)(n1)!(λs)n1eλsds,再对 n n n 求和即可得证。

栗子 4.3:题干同上面的栗子 4.2.

解:定义 f ( s ) = I [ 0 , t ] ( s ) ( t − s ) f(s)=I_{[0,t]}(s)(t-s) f(s)=I[0,t](s)(ts),则 S ( t ) = ∑ i = 1 ∞ f ( s i ) S(t)=\sum_{i=1}^{\infty} f(s_i) S(t)=i=1f(si),利用定理 4.5 结论即可得到 E [ S ( t ) ] = λ t 2 / 2 {\mathbb E}[S(t)] = \lambda t^2 /2 E[S(t)]=λt2/2

4.4 泊松过程的分流

定理 4.6:设 N ( t ) , t ≥ 0 N(t),t\ge0 N(t),t0 是参数为 λ \lambda λ 的泊松过程,到达事件的类型取决于它到达的时间。如果某到达时间是 s > 0 s>0 s>0,则它属于类型 1 的概率为 P ( s ) P(s) P(s),输于类型 2 的概率为 1 − P ( s ) 1-P(s) 1P(s)。假设 N m ( t ) , ( m = 1 , 2 ) N_m(t),(m=1,2) Nm(t),(m=1,2) 表示 ( 0 , t ] (0,t] (0,t] 内到达的类型 m m m 的事件数,则 N 1 ( t ) N_1(t) N1(t) N 2 ( t ) N_2(t) N2(t) 是两个独立的泊松变量,相应的均值分别为 λ p t \lambda pt λpt λ ( 1 − p ) t \lambda(1-p)t λ(1p)t,其中 p = 1 t ∫ 0 t P ( s ) d s p=\frac{1}{t}\int_0^t P(s) ds p=t10tP(s)ds

证明: P ( N 1 ( t ) = k , N 2 ( t ) = l ) = P ( N 1 ( t ) = k , N 2 ( t ) = l ∣ N ( t ) = k + l ) P ( N ( t ) = k + l ) P(N_1(t)=k, N_2(t)=l) = P(N_1(t)=k, N_2(t)=l | N(t)=k+l) P(N(t)=k+l) P(N1(t)=k,N2(t)=l)=P(N1(t)=k,N2(t)=lN(t)=k+l)P(N(t)=k+l),考虑发生在 ( 0 , t ] (0,t] (0,t] 的事件,如果事件在时刻 s s s 发生,由于其在 ( 0 , t ] (0,t] (0,t] 服从均匀分布,那么该事件是类型 1 的概率为 p = 1 t ∫ 0 t P ( s ) d s p=\frac{1}{t}\int_0^t P(s)ds p=t10tP(s)ds

另外由于这些事件相互独立,因此 P ( N 1 ( t ) = k , N 2 ( t ) = l ∣ N ( t ) = k + l ) = ( k + l k ) p k ( 1 − p ) l P(N_1(t)=k, N_2(t)=l | N(t)=k+l)=\tbinom{k+l}{k}p^k(1-p)^l P(N1(t)=k,N2(t)=lN(t)=k+l)=(kk+l)pk(1p)l。证毕。

Remark:如果 P ( s ) P(s) P(s) s s s 无关,那么分流之后将得到两个新的泊松流,否则不是泊松流。

最后给我的博客打个广告,欢迎光临
https://glooow1024.github.io/
https://glooow.gitee.io/

前面的一些博客链接如下
泛函分析专栏
高等数值分析专栏
随机过程专栏
随机过程1 绪论
随机过程2 平稳过程与二阶矩
离散鞅论1 | 基本概念
离散鞅论2 | 停时与停时定理
离散鞅论3 | 鞅论应用
泊松过程1 | 定义与基本性质
泊松过程2 | 泊松过程扩展
布朗运动 1 | 基本概念与性质
布朗运动 2 | 布朗运动的推广
马尔可夫过程1 | 基本概念
马尔可夫过程2 | 状态空间
连续参数马尔可夫链

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
泊松过程是一种最基本的随机过程,它在许多领域都有着广泛的应用。在本文综述中,我们将介绍泊松过程基本定义性质,以及它在统计学、生物学、物理学、金融学和工程学中的应用。 泊松过程基本定义性质 泊松过程是一个随机过程,它满足以下三个条件:1)在任意时间区间内,事件发生的数量是独立的;2)事件发生的概率是恒定的;3)事件发生的时间间隔服从指数分布。泊松过程的一个重要性质是它具有无记忆性,即过去的事件发生情况不会影响未来事件发生的概率。 泊松过程的应用 1.统计学 泊松过程在统计学中有广泛的应用,特别是在计数数据分析中。泊松分布是泊松过程的一个重要特例,它描述了单位时间内事件发生的次数。泊松分布在计数数据的建模中非常常见,例如在研究疾病发生率、交通事故数量、电话呼叫次数等方面。 2.生物学 在生物学中,泊松过程常用于描述化学反应中物质分子的扩散和碰撞。此外,泊松过程也用于研究神经元的放电频率和心脏的跳动次数。泊松过程可以帮助科学家更好地理解生物体系中的随机性和变异性。 3.物理学 在物理学中,泊松过程被广泛应用于描述粒子的散射和衰变。在核物理学中,泊松过程被用于描述放射性衰变的过程。 4.金融学 在金融学中,泊松过程被用于建立股票价格和汇率波动的模型。泊松过程可以帮助金融学家更好地理解金融市场中的随机性和不确定性。 5.工程学 在工程学中,泊松过程被用于建立可靠性和故障率的模型。泊松过程可以帮助工程师更好地了解备的寿命和维修需求。 总结 泊松过程是一种最基本的随机过程,它具有独立性、恒定概率和指数分布等特点。泊松过程在统计学、生物学、物理学、金融学和工程学中都有广泛的应用。通过了解泊松过程定义性质,我们可以更好地理解和应用它在不同领域中的应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值