数据埋点分析是一种常用的数据采集方法,指在需要采集数据的“操作节点”将数据采集的程序代码附加在功能程序代码中,对操作节点上用户行为或事件进行捕获、处理和发送相关技术及其实施过程。
数据埋点的价值
-
优化体验,提升效率:如,发现在一条操作路径中,某个隐藏的操作按钮使用率偏高,可以考虑外放该按钮,甚至放在突出的位置等。
-
优化产品结构:如,一二级菜单的排列、功能模块的顺序、Tab页的摆放等,让结构合理清晰、用户使用更加顺手。
-
辅助规划产品方向:重点功能的规划优先级、交互体验上的精细化设计。
数据埋点方向
-
核心功能:监控模块相关的用户操作路径上的交互控件。
-
上线新上功能:验证下产品决策是否正确。
-
判断不确定处:A/B test 验证哪种更合适。
用户可触发的操作行为
-
点击事件:在系统内部的每一次点击行为,都可以记为一次点击事件。
-
曝光事件:每成功打开、加载一次、刷新一次页面记为一次曝光事件。
-
页面事件:指页面的各种维度信息的统计,如PV、UV。
数据埋点工具
企业内部自研
公司有能力自己建设数据埋点,更加灵活精准,但成本也高。
第三方平台
-
友盟
-
神策数据
-
growing IO
-
腾讯 MTA
-
百度统计
-
Google Analytics
数据埋点方式
代码埋点
-
前端埋点:通过SDK进行数据采集,为了减少数据流量,通常对采集的数据进行压缩、暂存、打包上报,通常只在Wi-Fi环境下上报,因此会出现数据上报的延迟与漏报。
-
后端埋点:通过调用API 采集信息,使用内网传输信息,基本不会因为网络原因丢失数据。
可视化埋点
指通过可视化工具,如Google Analytics、TalkingData、诸葛IO等,在页面上选择需要埋点的元素,即可自动生成代码,并收集相应的数据。
无(全)埋点
指通过前端技术,自动收集用户的行为数据,无需手动添加埋点代码。这种方式适用于简单的数据采集需求,例如页面停留时间、滚动深度、搜索关键词等数据。如,GrowingIO、神策数据等。