读书-量子物理基础1

物理学中的对称性

当伽利略确定力学现象在所有惯性系中进行都相同后,爱因斯坦就想到不应当仅仅是力学现象,应当推广到包括所有物理现象,在惯性系进行都应当是相同的,从而创立了狭义相对论;同样,惯性系不应当是描述物理现象的唯一可能的一类参考系,所有参考系在描述物理规律上都应当是等价的,这就导致了广义相对论。所以相对论也是追求物理规律应当具有更高对称美的认识的产物,迄今人们仍在追求的“大一统理论”,也是在追求这种对称美。

简而言之,伽利略发现力学规律在所有惯性系中都相同,爱因斯坦推广到所有物理规律在所有惯性系中都相同(狭义),进一步又推广到所有物理规律在所有参考系中都相同(广义)。

量子物理基础1-波粒二象性

一. 黑体辐射问题、能量子假说

单色辐出度(monochromatic radiant exitance): 物体表面单位面积在单位时间发射的、波长在 λ \lambda λ λ + d λ \lambda + \text{d} \lambda λ+dλ范围内的电磁波能量与波长范围 d λ \text{d} \lambda dλ之比。单色辐出度是温度 T T T和波长 λ \lambda λ(频率 ν \nu ν)的函数,记为 e ( λ , T ) e(\lambda, T) e(λ,T)

辐出度(radiant exitance): 单色辐出度对波长积分给出物体表面单位面积的辐射功率。辐出度描述物体的辐射本领。

吸收率(absorption rate): 物体表面单位面积吸收的能量与入射能量的比。吸收率是温度 T T T的函数。

单色吸收率(monochromatic absorption rate): 温度为 T T T时、波长在 λ + d λ \lambda + \text{d} \lambda λ+dλ区间内的吸收率,记为 a ( λ , T ) a(\lambda, T) a(λ,T)

黑体(blackbody): 能完全吸收投射在其上的电磁波能量的物体,即在任何温度下对任意波长都有 a ( λ , T ) = 1 a(\lambda, T) = 1 a(λ,T)=1

基尔霍夫定律(Kirchhoff Theorem): 单色辐射度和单色吸收率之比是一个与构成物体的材料、物体表面性质无关,仅取决于温度和波长的普适函数,即:
e ( λ , T ) a ( λ , T ) = c ( λ , T ) (1) \frac{e(\lambda, T)}{a(\lambda, T)} = c(\lambda, T) \tag{1} a(λ,T)e(λ,T)=c(λ,T)(1)

c ( λ , T ) c(\lambda, T) c(λ,T)是仅依赖波长和温度的常数。

研究黑体辐射的意义:确定一个单色辐出度基准, e 0 ( λ , T ) e_0(\lambda, T) e0(λ,T)

图1:黑体单色辐出度与波长的关系曲线

图1是实验数据曲线,可以总结出以下特征:
(1)对一定的温度 T T T,曲线形状一定,与腔壁材料和空腔形状、大小无关。
(2)每条曲线下的面积,物理含义为一定温度下黑体辐出度,其与绝对温度 T 4 T^4 T4成正比(统计规律):
∫ e 0 ( λ , T ) d λ = σ T 4 \int e_0(\lambda, T) \text{d} \lambda = \sigma T^4 e0(λ,T)dλ=σT4

其中,比例系数 σ \sigma σ称为斯特潘-玻尔兹曼常量(Stefan-Boltzmann Constant),它的实验值为: σ = 5.670400 × 1 0 − 8 W / ( m 2 ⋅ K 4 ) \sigma = 5.670400 \times 10^{-8} \rm{W/(m^2 \cdot K^4)} σ=5.670400×108W/(m2K4)。这一结果称为斯特潘-玻尔兹曼定律
(3)对应一定温度 T T T e 0 ( λ , T ) e_0(\lambda, T) e0(λ,T)曲线有一最高点,最高点对应的波长 λ m \lambda_\text{m} λm满足:
λ m T = b \lambda_\text{m} T = b λmT=b

其中, b = 2.897756 × 1 0 − 3 m ⋅ K b = 2.897756 \times 10^{-3} \rm{m \cdot K} b=2.897756×103mK是个常数,这称为维恩位移定律(Wien displacement law)

如何从理论上解释实验数据呢?

第一个解释:1896年,维恩假设黑体辐射平衡时能量按频率的分布和同温度下理想气体按动能分配的麦克斯韦分布相同,导出一个黑体辐射单色辐出公式(维恩公式):
e 0 ( λ , T ) = B λ 5 e − A λ T e_0(\lambda, T) = \frac{B}{\lambda^5} e^{\frac{-A}{\lambda T}} e0(λ,T)=λ5BeλTA

其中, A A A B B B为常数。该公式在短波段和实验相符。

第二个解释:1900年,瑞利根据经典电动力学和经典统计的能量均分定理,经金斯修正后,得到一个黑体辐射能量密度谱分布的公式(瑞利-金斯公式):
e 0 ( λ , T ) = 2 π λ 4 k T e_0(\lambda, T) = \frac{2 \pi}{\lambda^4} k T e0(λ,T)=λ42πkT

其中, k = 1.380658 × 1 0 − 23 J / K k = 1.380658 \times 10^{-23} \rm{J/K} k=1.380658×1023J/K玻尔兹曼常量。该公式在长波段和实验相符。

图2:黑体辐射拟合曲线

第三个解释:1900年10月,德国物理学家普朗克改进了维恩公式,凑合实验数据(这里比较扯),得到一个新的黑体辐射公式(普朗克公式):
e 0 ( λ , T ) = 2 π h c 2 λ 5 1 e h c / λ k T − 1 e_0(\lambda, T) = \frac{2 \pi h c^2}{\lambda^5} \frac{1}{e^{hc / \lambda k T} - 1} e0(λ,T)=λ52πhc2ehc/λkT11

其中, h = 6.62606876 × 1 0 − 34 J ⋅ s h = 6.62606876 \times 10^{-34} \rm{J \cdot s} h=6.62606876×1034Js普朗克常量。这个(蒙的)公式和实验数据符合很好。在短波段 h c ≫ λ k T hc \gg \lambda k T hcλkT,分母中的1可以忽略,即得到维恩公式。在长波段 h c / λ k T ≪ 1 hc / \lambda k T \ll 1 hc/λkT1,将分母的 e h c / λ k T e^{hc / \lambda k T} ehc/λkT泰勒展开后取前两项,即得到瑞利-金斯公式。

很明显,这是一个蒙的公式,需要给出一个合理的解释或假设。

1900年12月24日,普朗克提出了一个惊人假设:对于一定频率的电磁辐射,物体只能以 h ν h \nu hν为单位发射或吸收电磁波。也就是说,物体发射或吸收电磁波只能以 “量子” 的方式进行,每个量子的能量为 ε = h ν \varepsilon = h \nu ε=hν,这就是能量子(quanta)假设。根据这一假设,就可以利用经典统计从理论上导出黑体辐射的普朗克公式了。

普朗克能量子假设和经典物理学连续性的概念是完全矛盾的。

二. 光的波粒二象性、光子

爱因斯坦光量子假设: 在上一节黑体辐射的普朗克理论中,只是假定构成器壁原子振动能量是量子化的,电磁波的发射和吸收是以能量子形式进行的,但电磁波在空间的传播仍按麦克斯韦电磁理论处理。1905年,爱因斯坦假定:电磁场本身也是量子化的,即电磁场是“由数目有限的、每个都局限与空间小体积中的能量子所组成,这些能量子在运动中不再分散,只能整个地被吸收或产生。” 其中,频率为 ν \nu ν的电磁场能量子的能力为 h ν h \nu hν,简称这些能量子为光子(photon)

光电效应(photoelectric effect): 光照射到金属上,有电子从金属表面逸出的现象。

光子是一种能量子,一定频率的光子不但有确定的能量,而且还有一定的动量。光子的能量:
ε = h ν = ℏ ω \varepsilon = h \nu = \hbar \omega ε=hν=ω

其中, ℏ = h / 2 π \hbar = h / 2 \pi =h/2π是现代文献资料中惯用记法,称为约化普朗克常量

光子的动量:
p = h ν c n = ℏ ω c n = ℏ k \boldsymbol{p} = \frac{h \nu}{c} \boldsymbol{n} = \hbar \frac{\omega}{c} \boldsymbol{n} = \hbar \boldsymbol{k} p=chνn=cωn=k

其中, ω = 2 π ν \omega = 2 \pi \nu ω=2πν是波的圆频率, n \boldsymbol{n} n是沿波传播方向的单位矢量, k = ω c n \boldsymbol{k} = \frac{\omega}{c} \boldsymbol{n} k=cωn是波矢量。

三. 实物粒子的波动性、物质波

光既有以波长 λ \lambda λ和频率 ω \omega ω表征的波动性,还具有由能量 ε \varepsilon ε和动量 p \boldsymbol{p} p表征的粒子性,这些量由爱因斯坦关系联系着:
{ ε = h ν = ℏ ω p = h λ n = ℏ k (2) \left \{ \begin{aligned} \varepsilon &= h \nu = \hbar \omega \\ \boldsymbol{p} &= \frac{h}{\lambda} \boldsymbol{n} = \hbar \boldsymbol{k} \end{aligned} \right. \tag{2} εp=hν=ω=λhn=k(2)

德布罗意的思考:作为波描述的辐射场具有粒子性,而作为粒子的物质为什么不可以具有波动性呢?人们在光的研究上强调了光的波动性,忽略了它的粒子性;而在物质粒子的研究上正相反,过分强调了粒子性,而忽略了波动性。

光子:静止质量为零;物质粒子:静止质量不为零。

德布罗意认为:任何物质运动都伴随着波,而且不可能将物体运动和波传播分开。并假设实物粒子的波性和粒子性间的数量关系与光波波性和粒子性的关系式 ( 2 ) (2) (2)相同。对实物粒子的式 ( 2 ) (2) (2)称为德布罗意关系

自由粒子的能力和动量都是常数,由德布罗意关系可知与自由粒子相伴的物质波频率和波矢(波长)都是常量,因此物质波是平面波。平面波函数(没理解是什么意思)可以写成复数形式:
ψ ( R , t ) = A e i ( k ⋅ R − ω t ) = A e i ℏ ( p ⋅ R − ε t ) \psi(\boldsymbol{R}, t) = A e^{i(\boldsymbol{k} \cdot \boldsymbol{R} - \omega t)} = A e^{\frac{i}{\hbar}(\boldsymbol{p} \cdot \boldsymbol{R} - \varepsilon t)} ψ(R,t)=Aei(kRωt)=Aei(pRεt)

那平面波函数的正常形式是什么呢?用欧拉公式 e i θ = cos ⁡ θ + i sin ⁡ θ e^{i \theta} = \cos \theta + i \sin \theta eiθ=cosθ+isinθ展开即可,欧拉公式将三角函数和复指数函数巧妙地联系了起来。

参考文献

  1. 李承祖, 曾交龙. 大学物理学(下册). 科学出版社, 2018.
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leweslyh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值