(时域和频域)控制系统响应速度和稳定性分析

本文探讨了控制系统中的性能分析,包括响应速度(通过阶跃响应和带宽衡量)和稳定性(通过超调量和凸峰值)。以PI控制的直流调速系统为例,通过MatlabSimulink仿真,对比不同增益系数下的响应速度和稳定性。相位裕度和增益裕度对系统稳定性的重要性也得到强调。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

水平有限,如有错误恳请指正。


目录

控制系统性能分析

响应速度分析

稳定性分析

仿真示例

稳定裕度

参考文献


相位与增益

在任意频率下,一个正弦波输入总是产生一个正弦波输出,输入与输出之间可能的差别仅在于相位与增益。

相位:用于描述输入与输出之间的时间移动。延迟可以用时间Tdelta表示,但更多是用度表示。

增益:用于测量输入与输出的幅值之间的差异,用分贝或dB表示。

相位与增益可由传递函数计算出

示例:输入正弦波1V,10Hz,输出0.7V,延迟12.5ms,则

示例:求输入信号10Hz的低通滤波器传递函数的相位与增益

控制系统性能分析

响应速度分析和稳定性分析,都采用阶跃响应进行测量。因为阶跃响应有丰富的高频成分,它有因陡峭的边沿带来的高频分量,也有边沿之间数值恒定所表征的低频分量,是一个在大频率范围内的激励系统。

响应速度分析

时域,测量系统跟随指令信号的速度,通过分析阶跃响应的建立时间。建立时间上升时间)表示从阶跃的初始值到目标值的95%或98%时刻之间的时间。

频域,测量系统跟随指令信号的速度,通过分析阶跃响应的闭环系统伯德图增益增益越大,响应速度越快。多数控制系统,在低频段指令响应良好,但是在高频段反应迟钝。在低频段,控制器有足够快的速度调节系统,但是随着频率的增加,控制器跟不上。从传递函数的角度,在低频段增益接近1,但是在高频段增益远小于1。

频域,常用带宽来度量闭环系统的响应速度,与带宽对应的频率,增益下降到-3dB或下降到原来增益的70%,带宽越大,响应速度越快。系统的时间常数近似表示为

其中,时间常数的单位秒,fB带宽的单位Hz

稳定性分析

时域,测量系统的稳定性,通过分析阶跃响应的超调量。超调量表示系统的最大值减去稳态值与稳态值的比再乘100%。实际应用中,超调量可接受范围0-30%

频域,测量系统的稳定性,通过分析阶跃响应的闭环系统伯德图增益。多数系统,在低频段的增益为0dB,随着频率的增加,增益减小。如果增益在开始减小前增大了,这种现象称为凸峰,表明系统临界稳定。实际应用中,凸峰值可接受范围0-4dB

仿真示例

PI控制的无静差直流调速系统为例,对其响应速度和稳定性进行分析。

1、在Matlab的Simulink仿真中绘制控制系统仿真图,设置两组对照组,一组Kp=Ki=0.05,另一组Kp=Ki=0.01。

2、响应速度分析,时域分析,将仿真输入放到示波器中观察,增益系数为0.05的系统上升时间更短,响应速度更快。

3、响应速度分析,频域分析,生成闭环系统伯德图,选择输入,右键Linear Analysis Points->Input Perturbation;选择输出,右键Linear Analysis Points->Output Measurement;选择分析,Analysis->Control Design->Linear Analysis。增益0.05时,带宽为6.98Hz;增益为0.01时,带宽为1.22Hz,所以增益0.05响应速度更快。

4、稳定性分析,时域分析,比较增益0.05和0.5的系统稳定性,从示波器波形的超调量可以看出,增益0.5超调量为65%,增益0.05超调量为10%,所以增益0.05更稳定。

5、稳定性分析,频域分析,比较增益0.05和0.5的系统稳定性,从闭环系统伯德图的凸峰值可以看出,增益0.5凸峰值为12.8dB,增益0.05凸峰值为0dB,所以增益0.05更稳定。

稳定裕度

增益穿越频率:开环伯德图增益通过0dB时的频率。

相位穿越频率:开环伯德图相位通过-180°时的频率。

对于开环增益K=1(20lgK=0dB)的系统,相位滞后180°时,系统从期望的负反馈变成正反馈,系统不稳定。即在相位为-180°时,只要开环增益远大于0dB或远小于0dB,系统稳定。

相位裕度(Phase Margin,PM),增益穿越频率对应的相位与-180°之差。

​​​​​​​增益裕度(Gain Margin,GM),相位穿越频率对应的增益与0dB之差。

工程经验表明,相位裕度PM范围35°到80°,增益裕度GM范围10dB25dB,具体根据控制器类型进行分析,相位裕度PM和增益裕度GM越大越好,这样可以消除没必要的相位滞后

参考文献

《Control System Design Guide》George Ellis

在电气工程自动化领域,系统定性分析是一个重要的环节,确保了设备系统的可靠运行。MATLAB作为一款强大的数学计算仿真软件,为控制系统定性分析提供了许多工具方法。以下是结合宋宇毕业设计案例的详细步骤解释: 参考资源链接:[MATLAB控制系统定性分析实践](https://wenku.csdn.net/doc/asx46buc8x?spm=1055.2569.3001.10343) 1. 时域分析:首先,使用MATLAB的Simulink工具箱建立系统的动态模型。在模型中施加输入信号,如阶跃信号,观察输出响应。时域分析主要通过绘制系统的阶跃响应或脉冲响应曲线来评估系统、振荡收敛速度等动态特性。这一步骤涉及的MATLAB函数包括step()impulse()。 2. 频域分析:将系统模型转换为传递函数形式,然后使用Control System Toolbox中的函数,如bode()、nyquist()nichols(),绘制相应的Bode图、Nyquist图或尼科尔斯图。通过这些图形,可以直观地分析系统的增益相位特性随频率变化的情况。定裕度(幅值裕度相位裕度)可以通过margin()函数计算得出。 3. 根轨迹分析:根轨迹法是分析系统定性的重要方法之一,它描绘了闭环极点随开环增益变化的轨迹。在MATLAB中,可以使用rlocus()函数生成根轨迹图,通过这个图可以判断系统在不同增益下的定性。 4. 控制器设计与优化:在分析系统定性后,如果需要,可以使用MATLAB设计PID控制器或其他高级控制策略。MATLAB提供了pidtune()等函数来辅助控制器设计。此外,还可以利用Simulink进行更复杂的控制器设计系统仿真。 5. 实验验证:理论分析之后,需要对MATLAB中的模型分析结果进行实验验证。可以通过硬件在回路仿真(HIL)或在实际设备上进行测试,来确保控制策略在真实世界环境中的有效性可靠性。 宋宇的案例显示,通过上述步骤,可以深入理解控制系统定性,并提出相应的优化措施,提高系统的整体性能。这些方法步骤对于任何从事控制系统定性分析的研究者或工程师来说,都是必不可少的技能。为了进一步提升这方面的知识技能,推荐阅读《MATLAB控制系统定性分析实践》一书,它为读者提供了更多实用的样例深入的理论知识。 参考资源链接:[MATLAB控制系统定性分析实践](https://wenku.csdn.net/doc/asx46buc8x?spm=1055.2569.3001.10343)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奶油芝士汉堡包

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值