目录
综述文献学习
依靠模型建立控制律的方法,鲁棒性是个大问题,像机器人控制系统这种复杂的控制系统,会遇到“模型灾难”。
控制系统中,由于外输入和反馈的存在,线性和非线性并没有分明的界限。
控制的目的是对一个“过程”的某种优化,并不是“全局”控制。
不管线性还是非线性系统,在一定条件下都可以通过反馈转换为线性积分器串联形式,称为反馈系统的基本结构。它的意义是不管原始系统物理性质是什么,是线性还是非线性,最后都可以通过反馈还原到最简单、最基本、最原始和最理想的形式,即积分器串联型。
线性系统理论定的标准型,可控型、可观型、Jordan标准型、横山标准型等都适用于开环系统。
外扰指系统外部环境中带来的未知摄动,内扰指系统的未知动态和它的变化,总扰动指外扰加内扰。
积分器的作用是在稳态估计总扰动,但是积分器相位滞后,在瞬态影响控制效果,甚至造成系统的不稳定。
PID和ADRC的区别在于,PID利用积分项给系统升阶,估计和补偿总扰动;ADRC克服了积分器的缺点,对总扰动进行全程估计和补偿。
一个控制系统要使输出迅速跟踪给定值有两个途径:高带宽和前馈。但是工业上带宽就是成本,高带宽虽然能使跟踪速度提高,但是也存在一些问题:
- 对执行机构的品质要求提高;
- 激励了对象的高频动态使控制问题复杂化;
- 闭环系统的稳定裕度下降;
- 对传感器噪声更敏感。
控制系统和滤波系统的根本不同:
- 被控对象不像滤波器,不可轻易改变;
- 被控对象中存在各种不同的扰动;
- 被控对象中的各种机械环节包括液压、气压动力系统的不确定性远远大于滤波器的参数变化;
- 被控系统的设计要求与滤波远远不同,特别是不允许输出的滞后。
信息的选择、提取、品质和使用等问题是控制工程特有的问题,也是控制论要研究的本质问题。
《工程控制论》中有三个观点令人深思:
- 基于传递函数的设计方法过于复杂,不适合工程实际的需要;
- 被控对象不仅有外扰还有内扰,工程控制的基本问题是要使系统能够在扰动影响下稳定运行;
- 控制器设计要摆脱对模型的依赖,依靠的是在恶劣的工作环境中对系统持续的测量和感知。
控制器要实时的提取在线信息而不能依赖模型信息。
指南车的发明说明,自动控制并非一定要依赖被控量的反馈信息,它也可以通过扰动信息的反馈实现。
前馈信息的本质:用离线信息弥补在线信息的不足。
抗扰可以在扰动还没有来得及对输出产生很大影响之前完成。
扰动响应
扰动一般施加在被控对象之前,并且扰动只能在引起输出发生偏移之后才能被检测出来,所以控制系统无法完全消除扰动。典型的扰动响应,由于有电容器,在高频段扰动响应表现好,由于有积分器,在扰动响应表现好,但是在中频段,扰动响应表现差。
扰动响应T(s)定义为系统输出C(s)对扰动输入D(s)的响应,理想扰动响应为负无穷dB,即T(s)=0。
从扰动响应传递函数可以看出,改善扰动响应,可以采用响应缓慢的被控对象,也可以通过增大控制器增益。
响应缓慢的被控对象,如大惯量器件或大电容,但是会增加成本。
增大控制器增益,包括增加比例增益和积分增益,增加比例增益既可以改善指令响应,也可以改善扰动响应(优化高频分量扰动);增加积分增益,对于指令响应改善有限,但是可以改善扰动响应(优化低频分量扰动)。
由于系统存在稳定性要求,稳定裕度小的系统,不能无限制的增加控制器增益。此时,对扰动进行测量或估计,在功率变换器之前减去等效的扰动量,近似消除扰动,这种方法称为扰动解耦法,比如自抗扰控制中的扩张状态观测器。
在系统稳定的前提下,增大控制器增益配合扰动解耦法,可以有效改善扰动响应。
干扰观测器
大多数情况下,干扰信息并不能准确的获知与测量(如实加负载、未知扰动等),必须依据模型信息和在线输入输出数据对干扰进行观测,然后基于干扰观测器计算相应的控制值,实现对干扰的直接补偿或抑制干扰带来的不利影响。
干扰观测器可以作为单独或附加模块存在于控制系统中,系统中原有的控制器用来实现最优跟踪性能,当不存在扰动或扰动可以忽略不计时,干扰观测器没有输出,对控制系统没有影响。
实际应用应综合使用:前馈 + 干扰观测器 + 反馈
干扰观测器又分为基于准确对象模型和不需要准确对象模型,其中不需要准确对象模型的有ADRC中的ESO(自抗扰控制中扩张状态观测器),只需要知道系统相对阶数和输入,ESO观测系统的总扰动(未建模动态、外部干扰和参数变化都归为总扰动)
LADRC算法
自抗扰控制(ADRC,Active Disturbance Rejection Control)是由韩京清先生提出的一种不依赖对象模型的控制算法,针对ADRC参数整定困难问题,高志强教授提出线性自抗扰控制(LADRC),将ADRC参数与控制器和观测器的频率联系起来,把参数整定问题转化为带宽调节问题。
LADRC基本结构图
自抗扰控制的精髓:扰动估计和补偿。
总扰动 = 内部扰动 (系统模型的不确定性)+ 外部扰动
线性扩张状态观测器LESO可分为无对象模型线性扩张状态观测器、模型辅助线性扩张状态观测器和降阶线性扩张状态观测器。
线性误差反馈控制律LSEF中存在补偿分量对总扰动进行实时估计和补偿。
使用LESO对总扰动进行估计,使用LSEF消除总扰动。
LADRC算法推导
以二阶线性系统为例
y为输出,u为输入,x1、x2和x3为状态变量,x3为扩张状态【状态变量数=系统阶数(被控对象的开环阶跃响应来确定ADRC的阶数),二阶系统所以x3成为扩张状态】,w为扰动,f为总扰动,扩张状态空间方程:
无对象模型线性扩张状态观测器:
其中,yc为输出,z为观测器的状态向量,L为观测器误差反馈增益矩阵。
由下式
观测器增益矩阵L与观测器带宽wo:
线性误差反馈控制律:
其中,u0:
r为给定值,z1、z2和z3为观测器状态, kp和kd是控制器的增益。
控制器带宽wc:
综上可得线性自抗扰控制算法公式:
LADRC算法n阶
总扰动f扩张成第n+1个状态变量
LADRC离散化—零阶保持法
LADRC算法在计算机上运行需要离散化,在固定采样率下运行。控制器部分值针对观测器输出分别按照kp、kd放大组合,不需要离散,只需要对观测器进行离散化。
当前零阶保持法效果优于当前一阶保持法和当前欧拉法,形式上更简单,相位滞后更小。零阶保持法在被离散对象前加零阶保持器,然后一起z变换离散化。
离散估计器极点与连续观测期极点之间的关系如下,其中h为采样周期。
一阶系统
一阶系统连续模型:
省略f, 添加零阶保持器后z变换得:
离散估计器方程如下,其中ud(k)为离散估计器输入组合,yd(k)为离散估计器输出,Lc为离散估计器误差反馈增益矩阵。
使下式成立,
得到离散估计器误差反馈增益矩阵:
最终得到一阶系统离散估计器方程:
二阶系统
二阶系统连续模型:
省略f, 添加零阶保持器后z变换得:
离散估计器方程如下,其中ud(k)为离散估计器输入组合,yd(k)为离散估计器输出,Lc为离散估计器误差反馈增益矩阵。
使下式成立,
得到离散估计器误差反馈增益矩阵:
最终得到二阶系统离散估计器方程:
LADRC参数整定方法
扰动补偿b0
b0表示控制对象的特性,可以由阶跃对象的初始加速度导出,b0越大,抗干扰能力越弱,为了使系统保持稳定,b0不能过大也不能过小。
b0参数整定:对控制对象输入幅值为U的阶跃信号,计算初始加速度,对于一阶系统,
对于二阶系统,
然后,计算b0
可以对b0进行微调,直到控制系统相对稳定。
控制器带宽wc
wc决定了控制器的响应速度,wc越大,系统响应速度越快,但是wc过大会导致系统超调甚至不稳定。过大会引入更多噪声,所以满足控制性能时,应选择较小的wc。
wc参数正定:先设置较小的wc,根据系统性能和运行状态进行微调,如果系统发生抖动,则增大b0。
观测器带宽wo
wo决定了观测器的跟踪速度,wo越大,观测器估计精度越高,抗干扰能力越强,瞬态响应速度加快,但是wo过大,会引入高频噪声,系统不稳定。wo参数应该考虑估计性能和噪声容许量。
wo参数整定:根据文献描述,近似有wo=(2~10)wc或wo=(3~5)wc一般取wo=4wc。
参考文献
[1]韩京清.控制理论——模型论还是控制论[J].系统科学与数学,1989,(04):328-335.
[2]高志强 (2013). 重读《控制理论---模型论还是控制论》有感.
[3]高志强.自抗扰控制思想探究[J].控制理论与应用,2013,30(12):1498-1510.
[4]高志强.浅谈工程控制的信息问题[J].系统科学与数学,2016,36(07):908-923.
[5]王传榜,王永,梁青.降阶自抗扰控制器对时滞系统控制研究[J].控制工程,2016,23(10):1602-1606.DOI:10.14107/j.cnki.kzgc.140569.
[6]梁青,王传榜,潘金文,卫一恒,王永.线性自抗扰控制参数b_0辨识及参数整定规律[J].控制与决策,2015,30(09):1691-1695.DOI:10.13195/j.kzyjc.2014.0943.
[7]朱斌.自抗扰控制入门
[8]George Ellis. Control System Design Guide.
[9]Design Active Disturbance Rejection Control for Boost Converter
[10]Design Active Disturbance Rejection Control for Water-Tank System