IF: 24+ 基于单细胞转录组分析揭示了膀胱癌中组蛋白与耐药之间的关联

ad6624ae55b570f87a673942b95d20cd.png


这期分享一篇2024年4月发表于 Drug Resistance Updates (IF 24+)的文章,作者基于单细胞转录组分析揭示了膀胱癌中组蛋白与耐药之间的关联。

该文章使用桓峰基因公众号里面生信分享教程即可实现,有需要类似思路的老师可以联系我们!

摘       要

膀胱癌 (BCa) 患者经常对铂类化疗产生耐药性,尤其是顺铂。本研究围绕 BCa 的顺铂耐药机制展开,并强调了乳酸化在驱动这一现象中的关键作用。利用单细胞 RNA 测序,我们描绘了 Bca 的单细胞图谱,确定了 Bca 细胞的一个独特亚群,该亚群对顺铂表现出明显的抗性,并与糖酵解代谢相关。值得注意的是,我们观察到 H3 赖氨酸 18 乳酸化 (H3K18la) 通过富集靶基因的启动子区域,在激活靶基因的转录中起着至关重要的作用。靶向抑制 H3K18la 有效地恢复了这些顺铂耐药上皮细胞的顺铂敏感性。此外,H3K18la 驱动的关键转录因子 YBX1 和 YY1 促进 BCa 的顺铂耐药。这些发现增强了我们对顺铂耐药机制的理解,为确定新的干预靶点以克服 Bca 耐药提供了有价值的见解。

29effc12273808df2573efeef90ba2eb.png

生信分析流程

数据集选择

单细胞数据:  GSM5751918(34癌和癌旁配对样本)

bulk转录组:  TCGA-BLCA and IMvigor210

敏感性和耐药性: GDSC2 database,the T24 and T24R cell lines, as well as the SW780 and SW780R cell lines,

基因集选择

DNA damage repair-related genes from the KEGG database

实验验证方法

Cell lines and cell cultures

ChIP-seq (H3K18la)

ChIP-qPCR

Western Blot

Cell proliferation assay and colony formation

Subcutaneous tumor formation in nude mice

Immunohistochemistry

RNA interference and plasmid transfection

Seahorse assay

生信分析方法

根据文章的分析流程提取所有的分析内容,整理出来就20个分析条目,每个条目都包括分析的内容,这些分析构成了整个文章,本文基于单细胞转录组和bulk转录组分析结合多种实验结果的干湿类文章,下面我们就看看哪些分析可以利用桓峰基因公众号的教程来实现,点击分析条码就会跳转到对应公众号的教程,跟着教程做,您也能发轻松发高分,如下:

单细胞相关分析

1.单细胞转录组可视化、差异分析(Seurat)

2.单细胞转录组之数据整合(Harmony)

3.单细胞转录组之细胞类型自动注释(SingleR)

4.单细胞转录组之聚类、分类和计数细胞(Monocle3)

5.单细胞转录组之筛选标记基因(Monocle3)

6.单细胞转录组之构建细胞轨迹(Monocle3)

7.单细胞转录组之差异表达分析(Monocle3)

8.单细胞细胞间通信第一部分细胞通讯可视化(CellChat)

9.单细胞数据量化代谢的计算方法(scMetabolism)

10.单细胞转录组之识别细胞对“基因集”的响应(AUCell)

11.单细胞调节网络推理和聚类转录因子(SCENIC)

12.单细胞调节网络推理和聚类转录因子(NetAct)

13.基因集变异分析(GSVA)

14.肿瘤免疫浸润计算(CIBERSORT)

15.基因表达KEGG富集分析(ClusterProfiler)

16.药物-基因关联预测分析(oncoPredict)

17.药物敏感性水平分析(oncoPredict)

18.单细胞表型相关亚群鉴定(Scissor)

19.生存分析之(Kaplan-Meier)

20.绘图相关方法

  散点图 (Scatter)

  柱状图 (Barplot)

  箱线图 (Boxplot)

  折线图 (Lineplot)

  直方图 (HistogramPlot)

  小提琴图 (ViolinPlot)

  相关性矩阵图(Correlation Matrix)

1. 生成BCa单细胞图谱并鉴定出顺铂耐药簇

A.所有细胞簇的UMAP图可视化。

B.火山图说明了10种细胞类型中差异表达的基因。

C.所有上皮团簇的UMAP图可视化。

D.Scissor算法鉴定BCa中顺铂耐药和敏感上皮表型。

E. DNA损伤修复评分(DDRs)在10个上皮细胞簇中的比例。

F.顺铂IC50值在顺铂耐药和敏感上皮表型之间的箱线图。

G.火山图显示顺铂耐药和敏感上皮细胞中差异上调的基因。

H.顺铂耐药和敏感上皮细胞差异表达基因的KEGG富集分析。

efba097e98a61ea9be7a871b06817b5f.png

2. 顺铂耐药簇的细胞通讯

A.免疫微环境中不同细胞类型之间的通信枢纽和权重。

B.顺铂耐药细胞与不同细胞类型之间的通信频率。

C.顺铂耐药细胞与其他细胞间通讯的主要途径。

00d9721e1d5769d0d799b8c3e373ef89.png

3. 鉴定驱动顺铂耐药簇的转录因子

A-B.分别使用SCENIC和NetAct算法鉴定顺铂耐药上皮簇中不同的激活转录因子。

C.转录因子调控网络的相互作用。

D.转录因子YY1和YBX1调控的顺铂耐药上皮特征的鉴定。

E.转录因子YY1、YBX1与相应靶基因之间与铂耐药机制相关的调控网络。

f158c28ef5c0ad44dc690f1e224a54cd.png

4. 说明顺铂耐药簇的发展轨迹

A.肿瘤上皮获得性耐药的时间分析。

B.顺铂耐药细胞群经历的三轮命运选择。

C-D.与顺铂耐药获得相关的转录因子和其他基因表达的时间增加。

31d26c7ac0a53bea5e0affd61e8835fc.png

5. 顺铂耐药簇的乳酸化上调

A.顺铂耐药细胞簇的代谢热图。

B-C.糖酵解水平与顺铂IC50的关系。

D.T24和T24R细胞的动态耗氧量(n = 4)和细胞外酸化率(n = 5)测量。

E.SW780和SW780R细胞的动态耗氧量(n = 4)和细胞外酸化率(n = 4)测量。

F.使用乳酸酸度测定试剂盒测定亲代细胞(T24和SW780)和顺铂耐药细胞(T24R和SW780R)培养基中指定时间点l -乳酸浓度。

G-H.利用Western blotting检测亲代细胞(T24和SW780)和顺铂耐药细胞(T24R和SW780R)的整体乳酸化水平和H3K18la水平。

d80207c53b8a96b40cb6e9ce3a69d028.png

6. H3K18la促进BCa的顺铂耐药

A.在不同浓度的2-DG或草酸盐中培养24小时的细胞乳酸产量和H3K18la水平。

B-C.通过集落形成实验评估10 μM顺铂与10 μM 2-DG或5 μM草酸盐或15 μM Nala联合处理后细胞的增殖能力。

D-E.Western blotting检测LDHA和LDHB沉默后细胞乳酸生成和H3K18la水平。

F-G.LDHA和LDHB沉默后细胞的菌落形成实验。

H-J.顺铂与2-DG或草酸酯联合应用可显著降低小鼠植入的顺铂耐药细胞的肿瘤生长。

0ce0fb2a650e28fb7af721ccb43cac68.png

7. H3K18la驱动顺铂耐药关键转录因子

A.H3K18la位点在基因序列中的分布比例。

B.H3K18la位点相对于转录起始位点(TSS)的分布。

C.T24、T24R、SW780、和SW780R细胞中YBX1和YY1基因启动子区H3K18la状态的ChIP-qPCR实验。

D.Western blotting检测亲本细胞和顺铂耐药细胞中YBX1和YY1的表达水平。

E.干扰LDHA和LDHB表达后,用15 μM Nala培养YBX1和YY1启动子区H3K18la的富集,采用ChIP-qPCR分析。

F.干扰LDHA和LDHB表达及15 μM Nala培养后YBX1和YY1 mRNA表达量,采用RT-qPCR分析。

G.Western blot检测干扰LDHA和LDHB表达后YBX1和YY1的表达水平。

2fcff74f93cb3f9c8c8bef28a1a1f5c9.png

8. 靶向YY1/YBX1克服BCa顺铂耐药

A.通过Western blotting验证BCa顺铂耐药细胞和BCa亲本细胞中YY1或YBX1的表达下调。

B.在BCa顺铂耐药细胞中,用15 μM Nala或等量PBS处理,敲除YY1或YBX1后,进行顺铂IC50测定。

C.在BCa亲本细胞中过表达YY1或YBX1,并干扰或不干扰LDH表达后,进行顺铂IC50测定。

D.在15 μM Nala或等量PBS处理BCa顺铂耐药细胞中,YY1或YBX1敲除后进行菌落形成测定。

E.在有或没有LDH表达干扰的情况下,在BCa亲本细胞中过表达YY1或YBX1后进行菌落形成实验。

F.小鼠皮下肿瘤组织以H3K18la、YY1、YBX1为靶点进行免疫组化。

f59e7018ff08487b06ad208c94991f4e.png

Reference

Li F, Zhang H, Huang Y, Li D, Zheng Z, Xie K, Cao C, Wang Q, Zhao X, Huang Z, Chen S, Chen H, Fan Q, Deng F, Hou L, Deng X, Tan W. Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer. Drug Resist Updat. 2024 Mar;73:101059.

桓峰基因,铸造成功的您!

未来桓峰基因公众号将不间断的推出各种系列生信分析教程,

敬请期待!!

桓峰基因官网正式上线,请大家多多关注,还有很多不足之处,大家多多指正!http://www.kyohogene.com/

桓峰基因和投必得合作,文章润色优惠85折,需要文章润色的老师可以直接到网站输入领取桓峰基因专属优惠券码:KYOHOGENE,然后上传,付款时选择桓峰基因优惠券即可享受85折优惠哦!https://www.topeditsci.com/

e5b609d2c5f5b6ab7b4e47c5cc086a74.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值