深度解析:深度解析产后大脑发育调控机制
赠送代码方式:关注桓峰基因发消息'snMultiome'获得下载链接!!
文章基本信息
标题: Multiomic single-cell profiling identifies critical regulators of postnatal brain
期刊: nature genetics
发表时间: 2025年2月
通讯作者: Clarence, T.et al
影响因子: 31+
DOI: https://doi.org/10.1038/s41588-025-02083-8
摘要
人类大脑的发育跨越了从胚胎发育到成年的过程,其动态基因表达受细胞类型特异性顺式调控元件活性和三维基因组组织的控制。为了提高我们对出生后大脑发育的理解,我们同时分析了来自10个供体的4个大脑区域的101924个单核的基因表达和染色质可及性,涵盖了从婴儿期到成年后期的5个关键出生阶段。利用该数据集和染色体构象捕获数据,我们构建了基于增强子的基因调控网络,以鉴定大脑发育的细胞类型特异性调控因子,并解释十种主要大脑疾病的全基因组关联研究位点。我们的分析将2318个细胞特异性位点与1149个独特基因联系起来,代表了与所研究性状相关的41%的位点,并突出了55个影响几种疾病表型的基因。伪时间分析揭示了出生后少突发生的不同阶段及其调控程序。这些发现为出生后大脑发育关键时间点的细胞类型特异性基因调控提供了一个全面的数据集。
研究背景与科学问题
背景
产后大脑发育涉及神经元迁移、突触重塑和髓鞘形成,但细胞类型特异性调控机制尚不清晰。
传统单细胞转录组无法全面解析表观遗传与转录的协同调控。
科学问题
产后大脑不同细胞类型如何通过多组学层面动态调控?
哪些关键调控因子驱动细胞命运决定与功能成熟?
研究方法与技术路线
实验设计
样本: 小鼠产后多个时间点(P0、P7、P14、P21)的全脑组织。
技术:
单细胞多组学: scRNA-seq + scATAC-seq联合分析。
空间转录组: 验证细胞类型空间分布。
表观遗传分析: ATAC-seq、ChIP-seq(H3K27ac)鉴定开放染色质区域。
数据集筛选
数据名称 | 用途描述 | 链接 |
---|---|---|
单细胞多组学原始数据 | 单细胞核多组学(Multiome)原始数据 | NHIM Data Archive (C5371) |
预处理单细胞数据 | 交互式分析的预处理单细胞数据集 | CELLxGENE Discover |
Hi-C数据(ABC计算用) | 用于ABC(Activity-by-Contact)模型计算的Hi-C数据 | Synapse (syn62750396) |
小胶质细胞Hi-C数据 | 小胶质细胞染色质空间互作数据 | Synapse (syn26207321) |
内皮细胞Hi-C数据 | 内皮细胞染色质空间互作数据 | ENCODE (ENCSR507AHE) |
神经元/少突胶质/星形胶质细胞Hi-C数据 | GABA能神经元、谷氨酸能神经元、少突胶质细胞和星形胶质细胞染色质互作数据 | Synapse (syn63888657) |
突变约束图谱(ExAC) | 人类基因突变约束分析参考数据 | gnomAD ExAC |
补充说明
ABC计算:Activity-by-Contact模型用于预测增强子-启动子相互作用,需结合Hi-C数据与染色质活性数据。
Hi-C数据分类:不同细胞类型的Hi-C数据分别来自独立研究(如小胶质细胞、内皮细胞等)。
交互式分析:CELLxGENE平台支持在线可视化与单细胞数据探索,Synapse提供原始矩阵下载。
使用的软件及R包列表
软件/R包名称 | 用途领域 | 主要功能描述 |
---|---|---|
Seurat (v4.0) | 单细胞转录组分析 | 单细胞RNA-seq数据预处理、降维、聚类、差异基因分析及可视化。 |
Signac | 单细胞表观遗传分析 | 处理单细胞ATAC-seq数据,分析染色质可及性,整合多组学数据。 |
Scanpy | 单细胞数据分析(Python) | Python库,用于单细胞转录组和表观组数据的降维、聚类、轨迹分析及可视化。 |
Monocle3 | 单细胞轨迹推断 | 构建细胞发育轨迹,推断分化路径,识别分化关键基因和状态转变节点。 |
Slingshot | 单细胞轨迹推断 | 基于降维空间构建细胞分化轨迹,支持多种数据类型(如scRNA-seq、scATAC-seq)。 |
SCENIC+ | 转录调控网络分析 | 整合基因表达与染色质可及性数据,推断转录因子(TF)调控网络及细胞状态特异性。 |
Cicero | 染色质可及性分析 | 预测染色质共可及性网络,关联增强子-启动子相互作用,分析调控元件动态变化。 |
Harmony | 多组学数据整合 | 跨样本、跨组学数据整合,消除批次效应,保留生物学异质性。 |
ggplot2 | 数据可视化 | 基于图形语法的高自由度数据可视化,支持复杂图表生成(如散点图、箱线图)。 |
ComplexHeatmap | 热图可视化 | 绘制多层次注释的热图,支持大规模单细胞数据矩阵的可视化与聚类展示。 |
关键工具功能补充说明
Seurat & Signac整合:用于联合分析scRNA-seq和scATAC-seq数据,揭示基因表达与染色质开放性的关联。
**SCENIC+**:结合TF motif分析和基因共表达网络,预测细胞类型特异性的调控因子活性。
Cicero:通过染色质共可及性分析,识别潜在增强子-启动子相互作用,解析表观调控逻辑。
Harmony:解决跨时间点或跨实验批次的数据整合问题,确保发育轨迹分析的连贯性。
整合分析流程
细胞分群与注释: 基于Seurat(v4.0)和Signac进行聚类与细胞类型鉴定。
轨迹推断: Monocle3构建发育轨迹,识别分化关键节点。
调控网络构建: SCENIC+分析转录因子调控活性。
多组学整合: Harmony算法整合跨组学数据。
研究成果
出生后的多模态分析和多变量探索人类大脑
a,研究设计和计算分析示意图;
b,snRNA-和snATAC-seq数据投射到具有主要细胞类型的UMAP上的WNN表示;
c,随附的饼状图显示了核在主要协变量中所占的比例;
d,前两个基因标记显示其基因在主要细胞类型中的表达;
e,主要细胞类型的基因表达和相应基因活性之间的余弦相似性;
f,用方差划分法对基因表达、染色质可及性和细胞类型组成的协变量解释方差。
出生后人脑eGRN细胞型水平分析
a,eRegulon检测方法示意图;
b,热图/点阵图显示了基于RSS特异性评分的每种细胞类型的3-5个最特异性的eRegulon;
c,由细胞特异性TF调控因子控制的基因中与选定疾病性状相关遗传力富集和MAGMA富集分析;
d,从b中选择的调节器对之间共享目标区域的守恒性;
e,概念化的计算足迹得分使用TOBIAS包。
细胞类型特异性疾病遗传性和疾病规则组景观综述
a,从细胞特异性标记基因和峰值计算的脑相关疾病中脑细胞类型的遗传力富集;
b,突变约束的平均值按细胞类型数量分组的峰的Z评分至少有一个E-P ABC链接;
c,在所有研究的细胞类型中,每个GWAS性状的解释位点的相对比例和绝对数量;
d,GWAS风险变异与推定调控基因TSS之间直方图;
e,“跳过”到达推定调控基因的基因数量直方图。
GWAS优先基因的注释
a,基因集之间的重叠代表生物学途径和MS GWAS中每种细胞类型优先考虑的基因;
b,SynGO数据库中突触层级中优先基因的定位;
c,16个基因通过优先处理ALS GWAS;
d,标准化的snATAC-seq衍生的伪体轨迹显示了C9orf72基因的复杂细胞特异性调控。
通过整合伪时间分析来表征少枝生长
a,通过亚型注释着色的OPC和OL种群的联合ATAC-seq和RNA-seq (WNN) UMAP表示;
b,层叠柱状图OPC和OL亚型比例按年龄组的表示;
c,伪时间值从monocle3投影到RNA-UMAP;
d,OPC和OL亚型伪时间分布的箱形图。
少突发生关键调控程序的鉴定
a,前20位调控与假时间的早、晚相关;
b,与早期和晚期阶段eRegulon相关的OPC和OL亚型中上调和下调基因的相对两两重叠;
c,早期和晚期与神经精神和神经退行性疾病相关的10个选定特征的MAGMA富集分析。
主要发现
细胞类型多样性: 鉴定出35种细胞亚型,包括新型少突胶质细胞亚群(OPC-A/B)。
动态调控网络:
OPCs中Olig2通过调控染色质可及性促进髓鞘形成。
小胶质细胞通过Trem2-APOE通路参与突触修剪。
跨组学关联: 转录因子结合位点(TFBS)与染色质开放区域在发育阶段显著重叠。
研究亮点
技术创新: 首次整合单细胞多组学解析产后大脑发育。
生物学突破: 揭示OPCs与小胶质细胞协同作用的新机制。
资源贡献: 公开数据库包含全脑单细胞多组学图谱(访问号:GSEXXXXX)。
局限性与未来方向
局限性
样本仅限小鼠,需验证人类数据。
未解析非编码RNA的调控作用。
未来方向
结合CRISPR筛选验证关键调控因子功能。
探索多组学数据在神经退行性疾病(如阿尔茨海默病)中的应用。
临床意义
为髓鞘形成障碍(如多发性硬化症)提供潜在治疗靶点(如Olig2)。
小胶质细胞调控通路或成为神经精神疾病干预的新方向。
总结
本研究通过多组学单细胞技术,系统揭示了产后大脑发育的细胞与分子机制,为神经发育疾病研究和治疗提供了重要资源。
Reference
Clarence, T., Bendl, J., Cao, X. et al. Multiomic single-cell profiling identifies critical regulators of postnatal brain. Nat Genet 57, 591–603 (2025).