
深度解析文章:全基因组关联分析揭示了痛风的新致病途径关注桓峰基因发消息'Gout'下载链接。
1.1 文章基本信息
- 标题:
A genome-wide association analysis reveals new pathogenic pathways in gout
- 作者: Major, T.J., et al
- 期刊: Nature Genetics
- 发表时间: 2024年10月
- 影响因子: 36+
- DOI:https://doi.org/10.1038/s41588-024-01921-5
1.2 文章摘要
痛风是一种慢性疾病,是由先天免疫反应引起的沉积尿酸钠晶体在高尿酸血症的设置。在这里,我们从260万人的全基因组关联研究(GWAS)中提供了对痛风炎症成分知之甚少的分子机制的见解,其中包括120,295人患有普遍痛风。我们检测到377个基因座和410个基因独立的信号(149个以前未报道的基因座在尿酸和痛风中)。另外还有 65个基因座(来自630,117个GWAS个体)具有尿酸信号,但没有痛风。一项优先方案确定了痛风炎症过程中的候选 基因,包括参与表观遗传重塑、细胞渗透压和NOD样受体蛋白3(NLRP3)炎症小体活性调节的基因。孟德尔随机化分析为克隆造血在痛风中不确定电位的因果作用提供了证据。我们的研究确定了痛风炎症发病机制中的候选基因和 分子过程,适合后续研究。
1.3
1.4 研究背景与科学问题
1.4.1 背景
痛风是一种由尿酸代谢异常引起的炎症性关节炎,全球发病率逐年上升。
已知遗传因素(如
ABCG2、URAT1)与尿酸排泄相关,但非尿酸相关通路的作用尚不明确。现有GWAS研究多聚焦于欧洲人群,缺乏跨种族验证。
1.4.2 科学问题
痛风的遗传风险位点是否与炎症通路直接相关?
是否存在未被发现的非尿酸代谢相关致病基因?
1.5 研究方法与技术路线
- 样本与数据
队列:纳入XX例痛风患者和XX例对照(需补充具体样本量及人群)。
基因分型:使用Illumina SNP芯片,质控后保留XX万个SNP。
- GWAS分析
-
统计模型:Logistic回归(校正年龄、性别、BMI等协变量)。
显著性阈值:全基因组水平(P < 5×10⁻⁸)。
- 功能注释与验证
-
基因定位:使用FUMA对显著SNP进行注释。
通路富集:GO、KEGG、Reactome数据库。
实验验证:细胞模型(如THP-1巨噬细胞)验证候选基因的炎症调控功能。
1.5.1 数据资源汇总表
数据名称
用途
链接
23andMe GWAS汇总统计(发现数据集) 痛风GWAS研究的全基因组关联分析数据,需签订隐私协议访问
https://research.23andme.com/collaborate/#dataset-access/
Supplementary Table 40 包含9,980个独立关联SNP的汇总统计数据
(需结合原文获取)
欧洲GWAS数据 基于UK Biobank LD参考的欧洲人群关联分析(P&l

最低0.47元/天 解锁文章
1279

被折叠的 条评论
为什么被折叠?



