IF:36+ 全基因组关联分析与孟德尔随机化揭示了痛风的新致病途径送代码

深度解析文章:全基因组关联分析揭示了痛风的新致病途径关注桓峰基因发消息'Gout'下载链接。


1.1 文章基本信息

  • 标题:

     A genome-wide association analysis reveals new pathogenic pathways in gout

  • 作者: Major, T.J., et al
  • 期刊: Nature Genetics
  • 发表时间: 2024年10月
  • 影响因子: 36+
  • DOI:https://doi.org/10.1038/s41588-024-01921-5

1.2 文章摘要

痛风是一种慢性疾病,是由先天免疫反应引起的沉积尿酸钠晶体在高尿酸血症的设置。在这里,我们从260万人的全基因组关联研究(GWAS)中提供了对痛风炎症成分知之甚少的分子机制的见解,其中包括120,295人患有普遍痛风。我们检测到377个基因座和410个基因独立的信号(149个以前未报道的基因座在尿酸和痛风中)。另外还有 65个基因座(来自630,117个GWAS个体)具有尿酸信号,但没有痛风。一项优先方案确定了痛风炎症过程中的候选 基因,包括参与表观遗传重塑、细胞渗透压和NOD样受体蛋白3(NLRP3)炎症小体活性调节的基因。孟德尔随机化分析为克隆造血在痛风中不确定电位的因果作用提供了证据。我们的研究确定了痛风炎症发病机制中的候选基因和 分子过程,适合后续研究。

1.3

1.4 研究背景与科学问题

1.4.1 背景

  • 痛风是一种由尿酸代谢异常引起的炎症性关节炎,全球发病率逐年上升。

  • 已知遗传因素(如ABCG2URAT1)与尿酸排泄相关,但非尿酸相关通路的作用尚不明确。

  • 现有GWAS研究多聚焦于欧洲人群,缺乏跨种族验证。

1.4.2 科学问题

  • 痛风的遗传风险位点是否与炎症通路直接相关?

  • 是否存在未被发现的非尿酸代谢相关致病基因?


1.5 研究方法与技术路线

  1. 样本与数据
  • 队列:纳入XX例痛风患者和XX例对照(需补充具体样本量及人群)。

  • 基因分型:使用Illumina SNP芯片,质控后保留XX万个SNP。

  • GWAS分析
    • 统计模型:Logistic回归(校正年龄、性别、BMI等协变量)。

    • 显著性阈值:全基因组水平(P < 5×10⁻⁸)。

  • 功能注释与验证
    • 基因定位:使用FUMA对显著SNP进行注释。

    • 通路富集:GO、KEGG、Reactome数据库。

    • 实验验证:细胞模型(如THP-1巨噬细胞)验证候选基因的炎症调控功能。


    1.5.1 数据资源汇总表

    数据名称

    用途

    链接

    23andMe GWAS汇总统计(发现数据集)

    痛风GWAS研究的全基因组关联分析数据,需签订隐私协议访问

    https://research.23andme.com/collaborate/#dataset-access/

    Supplementary Table 40

    包含9,980个独立关联SNP的汇总统计数据

    (需结合原文获取)

    欧洲GWAS数据

    基于UK Biobank LD参考的欧洲人群关联分析(P&l

内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航避障;②研究智能优化算法(如CPO)在路径规划中的实际部署性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为系统鲁棒性。
在科技快速演进的时代背景下,移动终端性能持续提升,用户对移动应用的功能需求日益增长。增强现实、虚拟现实、机器人导航、自动驾驶辅助、手势识别、物体检测距离测量等前沿技术正成为研究应用的热点。作为支撑这些技术的核心,双目视觉系统通过模仿人类双眼的成像机制,同步获取两路图像数据,并借助图像处理立体匹配算法提取场景深度信息,进而生成点云并实现三维重建。这一技术体系对提高移动终端的智能化程度及优化人机交互体验具有关键作用。 双目视觉系统需对同步采集的两路视频流进行严格的时间同步空间校正,确保图像在时空维度上精确对齐,这是后续深度计算立体匹配的基础。立体匹配旨在建立两幅图像中对应特征点的关联,通常依赖复杂且高效的计算算法以满足实时处理的要求。点云生成则是将匹配后的特征点转换为三维空间坐标集合,以表征物体的立体结构;其质量直接取决于图像处理效率匹配算法的精度。三维重建基于点云数据,运用计算机图形学方法构建物体或场景的三维模型,该技术在增强现实虚拟现实等领域尤为重要,能够为用户创造高度沉浸的交互环境。 双目视觉技术已广泛应用于多个领域:在增强现实虚拟现实中,它可提升场景的真实感沉浸感;在机器人导航自动驾驶辅助系统中,能实时感知环境并完成距离测量,为路径规划决策提供依据;在手势识别物体检测方面,可精准捕捉用户动作物体位置,推动人机交互设计智能识别系统的发展。此外,结合深度计算点云技术,双目系统在精确距离测量方面展现出显著潜力,能为多样化的应用场景提供可靠数据支持。 综上所述,双目视觉技术在图像处理、深度计算、立体匹配、点云生成及三维重建等环节均扮演着不可或缺的角色。其应用跨越多个科技前沿领域,不仅推动了移动设备智能化的发展,也为丰富交互体验提供了坚实的技术基础。随着相关算法的持续优化硬件性能的不断提升,未来双目视觉技术有望在各类智能系统中实现更广泛、更深层次的应用。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值