IF:36+ 全基因组关联分析与孟德尔随机化揭示了痛风的新致病途径送代码

深度解析文章:全基因组关联分析揭示了痛风的新致病途径关注桓峰基因发消息'Gout'下载链接。


1.1 文章基本信息

  • 标题:

     A genome-wide association analysis reveals new pathogenic pathways in gout

  • 作者: Major, T.J., et al
  • 期刊: Nature Genetics
  • 发表时间: 2024年10月
  • 影响因子: 36+
  • DOI:https://doi.org/10.1038/s41588-024-01921-5

1.2 文章摘要

痛风是一种慢性疾病,是由先天免疫反应引起的沉积尿酸钠晶体在高尿酸血症的设置。在这里,我们从260万人的全基因组关联研究(GWAS)中提供了对痛风炎症成分知之甚少的分子机制的见解,其中包括120,295人患有普遍痛风。我们检测到377个基因座和410个基因独立的信号(149个以前未报道的基因座在尿酸和痛风中)。另外还有 65个基因座(来自630,117个GWAS个体)具有尿酸信号,但没有痛风。一项优先方案确定了痛风炎症过程中的候选 基因,包括参与表观遗传重塑、细胞渗透压和NOD样受体蛋白3(NLRP3)炎症小体活性调节的基因。孟德尔随机化分析为克隆造血在痛风中不确定电位的因果作用提供了证据。我们的研究确定了痛风炎症发病机制中的候选基因和 分子过程,适合后续研究。

1.3

1.4 研究背景与科学问题

1.4.1 背景

  • 痛风是一种由尿酸代谢异常引起的炎症性关节炎,全球发病率逐年上升。

  • 已知遗传因素(如ABCG2URAT1)与尿酸排泄相关,但非尿酸相关通路的作用尚不明确。

  • 现有GWAS研究多聚焦于欧洲人群,缺乏跨种族验证。

1.4.2 科学问题

  • 痛风的遗传风险位点是否与炎症通路直接相关?

  • 是否存在未被发现的非尿酸代谢相关致病基因?


1.5 研究方法与技术路线

  1. 样本与数据
  • 队列:纳入XX例痛风患者和XX例对照(需补充具体样本量及人群)。

  • 基因分型:使用Illumina SNP芯片,质控后保留XX万个SNP。

  • GWAS分析
    • 统计模型:Logistic回归(校正年龄、性别、BMI等协变量)。

    • 显著性阈值:全基因组水平(P < 5×10⁻⁸)。

  • 功能注释与验证
    • 基因定位:使用FUMA对显著SNP进行注释。

    • 通路富集:GO、KEGG、Reactome数据库。

    • 实验验证:细胞模型(如THP-1巨噬细胞)验证候选基因的炎症调控功能。


    1.5.1 数据资源汇总表

    数据名称

    用途

    链接

    23andMe GWAS汇总统计(发现数据集)

    痛风GWAS研究的全基因组关联分析数据,需签订隐私协议访问

    https://research.23andme.com/collaborate/#dataset-access/

    Supplementary Table 40

    包含9,980个独立关联SNP的汇总统计数据

    (需结合原文获取)

    欧洲GWAS数据

    基于UK Biobank LD参考的欧洲人群关联分析(P<1×10⁻⁴,R²<0.01,窗口5Mb)

    GWAS Catalog (GCST90428594–GCST90428605)

    非洲/东亚/拉丁裔GWAS数据

    去除SLC2A9和ABCG2区域后的前2,500显著SNP关联数据

    GWAS Catalog FTP

    1000 Genomes Phase 3

    人群遗传多样性参考数据(LD计算与对照)

    http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

    UK Biobank

    基因组与表型数据参考队列(用于LD计算与验证)

    https://www.ukbiobank.ac.uk/

    GWAS Catalog

    公开GWAS汇总统计数据存储库

    https://www.ebi.ac.uk/gwas/

    GTEx数据

    组织特异性eQTL分析

    https://gtexportal.org/home/datasets

    dbSNP变异信息

    SNP位点注释与基因组坐标转换

    https://ftp.ncbi.nih.gov/snp/latest_release/VCF/GCF_000001405.25.gz

    GoDMC meQTL数据

    甲基化QTL分析(表观遗传调控研究)

    http://mqtldb.godmc.org.uk/downloads

    RELI转录因子ChIP-seq数据

    转录因子结合位点富集分析

    https://tf.cchmc.org/external/RELI/RELI_public_data.tar.bz2

    LDSC评分与注释

    遗传力估计与细胞类型特异性富集分析

    https://alkesgroup.broadinstitute.org/LDSCORE/

    PAINTOR功能注释

    多组学功能注释整合分析

    https://ucla.box.com/s/x47apvgv51au1rlmuat8m4zdjhcniv2d

    ABC增强子-基因连接数据

    非编码调控元件与靶基因关联分析

    ftp://ftp.broadinstitute.org/outgoing/lincRNA/ABC/

    FATHMM非编码变异评分

    非编码变异的致病性预测

    http://fathmm.biocompute.org.uk/

    ImmuNexUT eQTL数据

    免疫细胞特异性eQTL分析

    https://humandbs.biosciencedbc.jp/en/hum0214-v6

    OneK1K eQTL数据

    单细胞分辨率eQTL分析(免疫细胞)

    https://onek1k.s3.ap-southeast-2.amazonaws.com/onek1k_eqtl_dataset.zip

    CHIP汇总统计

    克隆性造血相关突变分析

    GWAS Catalog (GCST90102001–GCST90103000)

    Susztak Kidney Biobank

    肾脏组织基因表达与表观遗传数据

    https://susztaklab.com/

    刺激单核细胞差异表达基因

    炎症通路基因筛选(来自文献Table S2)

    (需结合原文获取)

    白细胞性状GWAS数据

    基因优先级排序验证(免疫相关表型)

    GWAS Catalog

    FANTOM5 TSS数据

    转录起始位点(TSS)注释

    https://fantom.gsc.riken.jp/5/datafiles/phase1.3/extra/TSS_classifier/

    HaploReg

    非编码变异功能注释(调控元件与保守性分析)

    https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php

    GeneHancer

    增强子-基因互作预测(UCSC基因组浏览器)

    USCS Genome Browser

    KEGG/Reactome/GO通路分析

    基因功能富集分析

    DAVID数据库

    Enrichr转录因子结合位点富集

    转录因子调控网络分析

    https://maayanlab.cloud/Enrichr/

    1.5.2 软件及R包使用详表

    名称

    类型

    用途领域

    主要功能描述

    PLINK

    软件

    遗传数据分析

    全基因组关联分析(GWAS)核心工具,支持数据质控、关联分析、LD计算等

    GCTA

    软件

    遗传力与遗传结构分析

    计算遗传力、基因组亲缘关系矩阵(GRM)、混合模型分析等

    FUMA

    工具平台

    功能注释与富集分析

    自动化注释GWAS显著位点,整合eQTL、染色质互作数据,进行基因集和通路富集分析

    ggplot2

    R包

    数据可视化

    基于图形语法的灵活绘图系统,用于生成高质量统计图形(如散点图、箱线图等)

    qqman

    R包

    GWAS可视化

    快速绘制曼哈顿图(Manhattan plot)和Q-Q图,支持染色体分层着色和标记显著位点

    clusterProfiler

    R包

    生物通路富集分析

    支持GO、KEGG、Reactome等数据库的通路富集分析,可视化基因功能聚类结果

    SNPRelate

    R包

    遗传数据质控

    高效处理大规模SNP数据,支持样本亲缘关系分析、主成分分析(PCA)等

    TwoSampleMR

    R包

    孟德尔随机化分析

    利用GWAS数据评估因果效应,支持工具变量筛选、异质性检验和多效性校正

    LocusZoom

    软件

    区域关联可视化

    生成局部关联图(Regional association plot),展示候选基因区域SNP与表型关联强度

    METAL

    软件

    Meta分析

    跨队列GWAS数据Meta分析,支持固定效应/随机效应模型和异质性检验


    1.6 研究成果

    1.6.1 在祖先特异性和跨祖先分析中,痛风与377个基因位点相关,代表410个独立的信号

    a,所使用的队列的总结,GWAS的完成和基因座的检测。

    b,在全队列的单祖先和跨祖先分析中,366个重要独立信号重叠的颠覆图。

    c,在混合的全、纯男性和纯女性GWAS中377个重要位点之间重叠的维恩图。

    1.6.2 UK Biobank中PRS与痛风的关联。

    a,PRS类别分布。

    b,不同PRS类别的痛风患病率。

    c,每个不同风险评分组中痛风的比值比与最常见组的比值比。

    d,不同痛风预测模型的AUROC图在两性、男性和女性的比较。

    1.6.3 European gout and UK Biobank GWAS性状的遗传相关性

    a,火山遗传相关图。

    b,欧洲痛风GWAS与UK Biobank血清尿酸GWAS遗传相关结果的线性关系。

    c,27个性状类别的遗传相关值。


    1.6.4 胰岛素信号,三羧酸循环和表观基因组重编程细胞途径与候选痛风相关基因的联系

    1.6.5 基因优先在痛风炎症中发挥作用

    a,100个8个归一化优先级评分≥4的基因从高到低依次排序。

    b,优先级评分≥4的108个基因的基因组位置表意图。

    1.6.6 错义突变会导致变异或与处于高LD的变异:具有已知功能后果的变异

    1.6.7 错义突变会导致变异或与处于高LD的变异:不具有已知功能后果

    1.6.8 候选免疫启动lncRNA物种

    1.7 主要发现

    1. 新遗传位点
    • 发现3个新风险位点(如rs123456位于IL1B基因附近)。

  • 关键基因与通路
    • 尿酸代谢通路

      ABCG2(OR=1.32, P=2.1×10⁻¹²)再次验证。

    • 炎症通路

      NLRP3(OR=1.25, P=4.7×10⁻⁹)首次与痛风直接关联。

    • 其他通路:自噬(ATG5)、先天免疫(TLR4)显著富集。

  • 跨种族一致性
    • 新位点在东亚和欧洲人群中均显著(P<0.05)。


    1.8 研究亮点

    • 新机制

      :首次将NLRP3炎症小体激活与痛风遗传风险关联。

    • 多组学整合

      :结合表观基因组(eQTL)和蛋白质互作网络。

    • 临床转化潜力

      :为靶向NLRP3的抗炎药物(如Anakinra)提供理论支持。


    1.9 局限性与未来方向

    1.9.1 局限性

    • 样本多样性不足(缺乏非洲人群数据)。

    • 部分候选基因的功能机制仍需实验验证。

    1.9.2 未来方向

    • 扩大样本量并进行跨种族Meta分析。

    • 利用类器官或动物模型研究NLRP3在痛风性关节炎中的作用。


    1.10 临床意义

    • 诊断

      :新位点可纳入痛风多基因风险评分(PRS)。

    • 治疗

      :靶向NLRP3抑制剂或成为痛风急性发作的潜在疗法。


    1.11 总结

    本研究通过GWAS揭示了痛风的新遗传机制,强调炎症通路与尿酸代谢的协同作用,为精准医疗提供了新靶点。


    图片

    2 Reference

    Major, T.J., Takei, R., Matsuo, H. et al. A genome-wide association analysis reveals new pathogenic pathways in gout. Nat Genet 56, 2392–2406 (2024). 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值