AlphaFold 3(AF3)是由DeepMind开发的最新一代生物分子结构预测模型,其核心在于通过深度学习技术实现高精度的生物分子结构预测。以下是AlphaFold 3的原理和实现过程的详细解析:
原理
- 深度学习框架:AlphaFold 3基于深度学习框架,利用大规模的生物分子结构数据进行训练,学习分子间相互作用的关键特征。
- Pairformer模块:AlphaFold 3引入了Pairformer模块,替代了AlphaFold 2中的Evoformer模块。Pairformer专注于成对表示的处理,减少了多序列比对(MSA)的处理量,从而简化了模型架构并提高了计算效率。
- 扩散模块:AlphaFold 3使用扩散模块直接预测原子坐标,避免了复杂的立体化学处理和侧链扭转角预测。这种多尺度的建模方法能够处理各种类型的生物分子,包括蛋白质、核酸、小分子等。
- 跨蒸馏技术:AlphaFold 3采用跨蒸馏技术,通过高性能模型生成的大规模伪标签数据进行训练,提升了模型的鲁棒性和泛化能力。
- 生成对抗网络(GAN) :在训练过程中,AlphaFold 3还涉及GAN的概念,通过对抗性训练提高预测准确性。
实现过程
-
输入处理:
- AlphaFold 3接受多种类型的输入,包括蛋白质序列、RNA序列、DNA序列以及小分子的SMILES字符串。
- 输入模块会从数据库中检索模板结构,并进行多序列比对(MSA),以生成初始的序列特征。
-
特征提取与表示学习:
- Pairformer模块生成序列特征的嵌入,包括成对嵌入、相对编码、化学键和模板特征嵌入。
- 模型通过注意力机制动态调整不同序列之间的权重,确保聚焦于最重要的信息。
-
结构预测:
- 扩散模块从随机噪声开始,逐步恢复出蛋白质的真实结构。这一过程类似于AI图像生成器中的扩散网络,通过加噪和去噪的多次迭代,最终生成清晰的三维结构。
- 结构模块负责生成蛋白质的三维结构,而评分模块则用于评估生成结构的合理性,并通过置信度头计算局部距离差异测试分数(pLDDT)、预测对齐误差矩阵&#