模糊度固定LAMBDA算法详解

本文详细介绍了最小二乘搜索法在模糊度处理中的应用,包括LDL分解、高斯变换降低模糊度相关性、条件方差排序确定搜索空间,以及如何通过这些步骤恢复模糊度。关键步骤包括Z变换降相关、搜索空间的计算和最终的模糊度恢复算法。
摘要由CSDN通过智能技术生成

最小二乘搜索法

模糊度固定问题可以用一下方式表达:
a ˇ = a r g m i n ( a − a ^ ) T Q a ^ − 1 ( a − a ^ ) (1) \check{a} = arg\quad min(a-\hat{a})^TQ_{\hat{a}}^{-1}(a-\hat{a})\tag{1} aˇ=argmin(aa^)TQa^1(aa^)(1)
Q a ^ Q_{\hat{a}} Qa^为对角阵(即模糊度参数之间不相关),直接对模糊度进行取整便可。因此必须对模糊度进行搜索。直接对模糊度进行搜索,其搜索空间十分狭长,一般采用降相关,再进行搜索。

LAMBDA搜索法采用Z变换的降相关方法:

z = Z T a z ^ = Z T a ^ Q z ^ = Z T Q a ^ Z (2) z=Z^Ta\\ \hat{z}=Z^T\hat{a}\\ Q_{\hat{z}}=Z^TQ_{\hat{a}}Z\tag{2} z=ZTaz^=ZTa^Qz^=ZTQa^Z(2)
因此新的模糊度固定问题可转化为下列式子:
z ˇ = a r g m i n ( z − z ^ ) T Q z ^ − 1 ( z − z ^ ) (3) \check{z} = arg\quad min(z-\hat{z})^TQ_{\hat{z}}^{-1}(z-\hat{z})\tag{3} zˇ=argmin(zz^)TQz^1(zz^)(3)

1、LDL分解

Q a ^ = L ˉ T D ˉ L ˉ (4) Q_{\hat{a}}=\bar{L}^T\bar{D}\bar{L}\tag{4} Qa^=LˉTDˉLˉ(4)
Q z ^ = L T D L (5) Q_{\hat{z}}=L^TDL\tag{5} Qz^=LTDL(5)
L L L矩阵对应的元素为 l l l L ˉ \bar{L} Lˉ矩阵对应的元素为 l ˉ \bar{l} lˉ,均为下三角矩阵

将(5)带入(3)可重写为:

F ( z ) = ( z − z ^ ) T L − T D − 1 L − 1 ( z − z ^ ) (6) F(z) = (z-\hat{z})^TL^{-T}D^{-1}L^{-1}(z-\hat{z})\tag{6} F(z)=(zz^)TLTD1L1(zz^)(6)

2、高斯变换

通过LDL分解的下三角矩阵 L L L中的元素并不为零,说明模糊度参数之间存在相关性,给定下三角矩阵 L L L,找出幺模矩阵 Z Z Z使得 L Z LZ LZ尽可能对角化,从而降低模糊度之间的相关性,使得通过 Z Z Z变换的模糊度相关性大大降低.

L L L下三角的元素 l i , j l_{i,j} li,j,当  ∣ l i , j ∣ > 0.5 ( j > i ) |l_{i,j}| > 0.5(j>i) li,j>0.5(j>i) 时,对应的高斯变换矩阵为:
Z i , j = I n − [ l i , j ] ∗ e i e j T (7) Z_{i,j}=I_n-[l_{i,j}]*e_ie_j^T\tag{7} Zi,j=In[li,j]eiejT(7)
其中, I n I_n In n n n维单位向量, [ ⋅ ] [\cdot] []为取整算子, e i e_i ei e j e_j ej分别为 i , j i,j i,j对应的单位向量:
e.g.
e i = [ 0 0 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0 ] e_i = \left[ \begin{matrix} 0&0&···&1&0&···&0 \end{matrix} \right] ei=[00⋅⋅⋅10⋅⋅⋅0]
1在第 i i i位。

l ˉ k , j = l k , j − [ l i , j ] l k , i ( k = i , i + 1 , ⋅ ⋅ ⋅ , n ) (8) \bar{l}_{k,j}=l_{k,j}-[l_{i,j}] l_{k,i}\quad(k=i,i+1,···,n)\tag{8} lˉk,j=lk,j[li,j]lk,i(k=i,i+1,⋅⋅⋅,n)(8)
举例:

给定单位下三角矩阵 L L L如下:

L = [ 1 0 0 0 l 21 1 0 0 l 31 l 32 1 0 l 41 l 42 l 43 1 ] L= \left[ \begin{matrix} 1&0&0&0\\ l_{21}&1&0&0\\ l_{31}&l_{32}&1&0\\ l_{41}&l_{42}&l_{43}&1\\ \end{matrix} \right] L= 1l21l31l4101l32l42001l430001
通过右乘高斯变换矩阵的方式,将 L L L尽可能对角化,其中[*]为取整操作, 0 ~ \tilde{0} 0~表示接近零。
L Z 21 = [ 1 0 0 0 l 21 1 0 0 l 31 l 32 1 0 l 41 l 42 l 43 1 ] [ 1 0 0 0 − [ l 21 ] 1 0 0 0 0 1 0 0 0 0 1 ] = [ 1 0 0 0 l 21 − [ l 21 ] ∗ 1 1 0 0 l 31 − [ l 21 ] ∗ l 32 l 32 1 0 l 41 − [ l 21 ] ∗ l 42 l 42 l 43 1 ] LZ_{21}= \left[ \begin{matrix} 1&0&0&0\\ l_{21}&1&0&0\\ l_{31}&l_{32}&1&0\\ l_{41}&l_{42}&l_{43}&1\\ \end{matrix} \right] \left[ \begin{matrix} 1&0&0&0\\ -[l_{21}]&1&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{matrix} \right] = \left[ \begin{matrix} 1&0&0&0\\ l_{21}-[l_{21}]*1&1&0&0\\ l_{31}-[l_{21}]*l_{32}&l_{32}&1&0\\ l_{41}-[l_{21}]*l_{42}&l_{42}&l_{43}&1\\ \end{matrix} \right] LZ21= 1l21l31l4101l32l42001l430001 1[l21]00010000100001 = 1l21[l21]1l31[l21]l32l41[l21]l4201l32l42001l430001
L Z 21 Z 31 = [ 1 0 0 0 0 ~ 21 1 0 0 l 31 ( 2 ) l 32 ( 2 ) 1 0 l 41 ( 2 ) l 42 ( 2 ) l 43 ( 2 ) 1 ] [ 1 0 0 0 0 1 0 0 − [ l 31 ( 2 ) ] 0 1 0 0 0 0 1 ] = [ 1 0 0 0 0 ~ 21 1 0 0 l 31 ( 2 ) − [ l 31 ( 2 ) ] ∗ 1 l 32 ( 2 ) 1 0 l 41 ( 2 ) − [ l 31 ( 2 ) ] ∗ l 43 ( 2 ) l 42 ( 2 ) l 43 ( 2 ) 1 ] LZ_{21}Z_{31}= \left[ \begin{matrix} 1&0&0&0\\ \tilde{0}_{21}&1&0&0\\ l_{31}^{(2)}&l_{32}^{(2)}&1&0\\ l_{41}^{(2)}&l_{42}^{(2)}&l_{43}^{(2)}&1\\ \end{matrix} \right] \left[ \begin{matrix} 1&0&0&0\\ 0&1&0&0\\ -[l_{31}^{(2)}]&0&1&0\\ 0&0&0&1\\ \end{matrix} \right] = \left[ \begin{matrix} 1&0&0&0\\ \tilde{0}_{21}&1&0&0\\ l_{31}^{(2)}-[l_{31}^{(2)}]*1&l_{32}^{(2)}&1&0\\ l_{41}^{(2)}-[l_{31}^{(2)}]*l_{43}^{(2)}&l_{42}^{(2)}&l_{43}^{(2)}&1\\ \end{matrix} \right]\\ LZ21Z31= 10~21l31(2)l41(2)01l32(2)l42(2)001l43(2)0001 10[l31(2)]0010000100001 = 10~21l31(2)[l31(2)]1l41(2)[l31(2)]l43(2)01l32(2)l42(2)001l43(2)0001
. . . ... ...
L Z = [ 1 0 0 0 0 ~ 21 1 0 0 0 ~ 31 0 ~ 32 1 0 0 ~ 41 0 ~ 42 0 ~ 43 1 ] , Z = Z 21 Z 31 Z 32 Z 41 Z 42 Z 43 = [ 1 0 0 0 − [ l 21 ] 1 0 0 − [ l 31 ( 2 ) ] − [ l 32 ( 3 ) ] 1 0 − [ l 41 ( 4 ) ] − [ l 42 ( 5 ) ] − [ l 43 ( 6 ) ] 1 ] LZ= \left[ \begin{matrix} 1&0&0&0\\ \tilde{0}_{21}&1&0&0\\ \tilde{0}_{31}&\tilde{0}_{32}&1&0\\ \tilde{0}_{41}&\tilde{0}_{42}&\tilde{0}_{43}&1\\ \end{matrix} \right], Z=Z_{21}Z_{31}Z_{32}Z_{41}Z_{42}Z_{43}= \left[ \begin{matrix} 1&0&0&0\\ -[l_{21}]&1&0&0\\ -[l_{31}^{(2)}]&-[l_{32}^{(3)}]&1&0\\ -[l_{41}^{(4)}]&-[l_{42}^{(5)}]&-[l_{43}^{(6)}]&1\\ \end{matrix} \right] LZ= 10~210~310~41010~320~420010~430001 ,Z=Z21Z31Z32Z41Z42Z43= 1[l21][l31(2)][l41(4)]01[l32(3)][l42(5)]001[l43(6)]0001
码表示为:

输入:下三角矩阵L, 矩阵维度n
输出:变换矩阵Z
初始化:
    check(n >= 2)
    check(L ? unit lowr triangular)
开始:
    for row = 2 : n
        for col= 1 : row - 1
            u = [L(row, col)]
            if (u != 0)
                L(row : n, col) = L(row : n, col) - u * L(row: n, row)
                Z(row, col) = -u
            end
        end
    end

c代码如下

int8_t gauss_transform(matrix_t *L, matrix_t *Z)
{
    if (!lower_matrix_check(L))
    {
        return -1;
    }

    if (L->col <= 2)
    {
        return -1;
    }
    uint32_t col = 0;
    uint32_t row = 0;
    for (row = 1; row < L->row; ++row)
    {
        for (col = 0; col < row; ++col)
        {
            fp64 u = get_integer(L->element[row][col]);
            if (!IS_ZEROS(u))
            {
                Z->element[row][col] = -u;
                uint32_t i = 0;
                for (i = row; i < L->row; ++i)
                {
                    L->element[i][col] -= u * L->element[i][row];
                }
            }
        }
    }

    return 1;

}

3、条件方差排序

满足条件:

d i + l ˉ i + 1 , i 2 d i + 1 ⩽ d i + 1 (9) d_i+\bar{l}_{i+1,i}^2d_{i+1} \leqslant d_{i+1}\tag{9} di+lˉi+1,i2di+1di+1(9)
详情后续不上

4、确定模糊度的搜索空间

模糊度的搜索空间无法根据 Q a ^ Q_{\hat{a}} Qa^直接得到,所以我们定义:

z − z ~ = L ( z − z ^ ) (10) z-\tilde{z}=L(z-\hat{z})\tag{10} zz~=L(zz^)(10)
对(10)展开可得:

[ z 1 − z ~ 1 . . . z 1 − z ~ 1 ] = [ 1 0 0 . . . l 21 1 ⋅ ⋅ ⋅ . . . 0 l n ( n − 1 ) 1 ] ( [ z 1 . . . z n ] − [ z ^ 1 . . . z ^ n ] ) \left[ \begin{matrix} z_1-\tilde{z}_1\\ ...\\ z_1-\tilde{z}_1 \end{matrix} \right]=\left[ \begin{matrix} 1&0&0&...\\ l_{21}&1&\cdot_{\cdot_{\cdot}}\\ ...&0&l_{n(n-1)}&1 \end{matrix} \right] \left( \left[ \begin{matrix} z_1\\ ...\\ z_n \end{matrix} \right] - \left[ \begin{matrix} \hat{z}_1\\ ...\\ \hat{z}_n \end{matrix} \right] \right) z1z~1...z1z~1 = 1l21...0100ln(n1)...1 z1...zn z^1...z^n
因此(6)可以更新为:

F ( z ) = ( z − z ~ ) T D ( z − z ~ ) = d 11 ( z 1 − z ~ 1 ) + ⋅ ⋅ ⋅ + d n n ( z n − z ~ n ) ≤ χ 2 (11) F(\pmb{z})=(\pmb{z}-\tilde{\pmb{z}})^T\pmb{D}(\pmb{z}-\tilde{\pmb{z}}) =d_{11}(z_1-\tilde{z}_1)+···+d_{nn}(z_n-\tilde{z}_n) \leq \chi^2\tag{11} F(z)=(zz~)TD(zz~)=d11(z1z~1)+⋅⋅⋅+dnn(znz~n)χ2(11)
从(11)中可以得到 z − z ~ \pmb{z}-\pmb{\tilde{z}} zz~的搜索空间:

{ ∣ z 1 − z ~ 1 ∣ = χ 2 d 11 ∣ z 2 − z ~ 2 ∣ = χ 2 − ( z 1 − z ~ 1 ) 2 d 11 d 22 ⋅ ⋅ ⋅ ∣ z n − z ~ n ∣ = χ 2 − [ ( z 1 − z ~ 1 ) 2 d 11 + ⋅ ⋅ ⋅ + ( z n − 1 + z ~ n − 1 ) 2 d ( n − 1 ) ( n − 1 ) ] d n n (12) \left\{ \begin{aligned} |z_1-\tilde{z}_1| &= \sqrt{\frac{\chi^2}{d_{11}}}\\ |z_2-\tilde{z}_2| &= \sqrt{\frac{\chi^2 -(z_1-\tilde{z}_1)^2 d_{11}}{d_{22}}}\\ &···\\ |z_n-\tilde{z}_n| &= \sqrt{\frac{\chi^2 -[(z_1-\tilde{z}_1)^2 d_{11} + ···+(z_{n-1}+\tilde{z}_{n-1})^2 d_{(n-1)(n-1)}]}{d_{nn}}} \end{aligned} \right.\tag{12} z1z~1z2z~2znz~n=d11χ2 =d22χ2(z1z~1)2d11 ⋅⋅⋅=dnnχ2[(z1z~1)2d11+⋅⋅⋅+(zn1+z~n1)2d(n1)(n1)] (12)
将(10)代入(12)中:

{ ∣ z 1 − z ^ 1 ∣ = χ 2 d 11 ∣ l 21 ( z 1 − z ^ 1 ) + ( z 2 − z ^ 2 ) ∣ = χ 2 − ( z 1 − z ^ 1 ) d 11 d 22 ⋅ ⋅ ⋅ ∣ l n 1 ( z 1 − z ^ 1 ) + ⋅ ⋅ ⋅ + l n ( n − 1 ) ( z n − 1 − z ^ n − 1 ) + ( z n − z ^ n ) ∣ = χ 2 − [ ( z 1 − z ^ 1 ) 2 d 11 + ( l 21 ( z 1 − z ^ 1 ) + ( z 2 z ^ 2 ) ) 2 d 22 + ⋅ ⋅ ⋅ ] d n n (13) \left\{ \begin{aligned} &|z_1-\hat{z}_1| = \sqrt{\frac{\chi^2}{d_{11}}}\\ &|l_{21}(z_1-\hat{z}_1)+(z_2-\hat{z}_2)| = \sqrt{\frac{\chi^2 -(z_1-\hat{z}_1) d_{11}}{d_{22}}}\\ &···\\ &|l_{n1}(z_1-\hat{z}_1)+···+l_{n(n-1)}(z_{n-1}-\hat{z}_{n-1})+(z_n-\hat{z}_n)| = \sqrt{\frac{\chi^2 -[(z_1-\hat{z}_1)^2 d_{11} + (l_{21}(z_1-\hat{z}_1)+(z_{2}\hat{z}_{2}))^2d_{22} + ···]}{d_{nn}}} \end{aligned} \right.\tag{13} z1z^1=d11χ2 l21(z1z^1)+(z2z^2)=d22χ2(z1z^1)d11 ⋅⋅⋅ln1(z1z^1)+⋅⋅⋅+ln(n1)(zn1z^n1)+(znz^n)=dnnχ2[(z1z^1)2d11+(l21(z1z^1)+(z2z^2))2d22+⋅⋅⋅] (13)
为了方便表达,我们有如下定义:

{ z ˉ 1 = z ^ 1 z ˉ 2 = z ^ 2 − l 21 ( z 1 − z ^ 1 ) z ˉ 3 = z ^ 3 − l 31 ( z 1 − z ^ 1 ) − l 32 ( z 2 − z ^ 2 ) ⋅ ⋅ ⋅ z ˉ n = z ^ n − l n 1 ( z 1 − z ^ 1 ) − l n 2 ( z 2 − z ^ 2 ) − ⋅ ⋅ ⋅ − l n ( n − 1 ) ( z n − 1 − z n − 1 ^ ) (14) \left\{ \begin{aligned} \bar{z}_1 &= \hat{z}_1\\ \bar{z}_2 &= \hat{z}_2 - l_{21}(z_1 - \hat{z}_1)\\ \bar{z}_3 &= \hat{z}_3 - l_{31}(z_1 - \hat{z}_1)- l_{32}(z_2-\hat{z}_2)\\ &···\\ \bar{z}_n &=\hat{z}_n - l_{n1}(z_1-\hat{z}_1)-l_{n2}(z_2-\hat{z}_2)-···-l_{n(n-1)}(z_{n-1}-\hat{z_{n-1}}) \end{aligned} \right.\tag{14} zˉ1zˉ2zˉ3zˉn=z^1=z^2l21(z1z^1)=z^3l31(z1z^1)l32(z2z^2)⋅⋅⋅=z^nln1(z1z^1)ln2(z2z^2)⋅⋅⋅ln(n1)(zn1zn1^)(14)
将(14)代入(13),则有:

{ ∣ z 1 − z ˉ 1 ∣ = χ 2 d 11 ∣ ( z 2 − z ˉ 2 ) ∣ = χ 2 − ( z 1 − z ˉ 1 ) d 11 d 22 ⋅ ⋅ ⋅ ∣ ( z n − z ˉ n ) ∣ = χ 2 − [ ( z 1 − z ˉ 1 ) 2 d 11 + ( z 2 − z ˉ 2 ) 2 d 22 + ⋅ ⋅ ⋅ + ( z n − 1 − z ˉ n − 1 ) 2 d ( n − 1 ) ( n − 1 ) ] d n n (15) \left\{ \begin{aligned} &|z_1-\bar{z}_1| = \sqrt{\frac{\chi^2}{d_{11}}}\\ &|(z_2-\bar{z}_2)| = \sqrt{\frac{\chi^2 -(z_1-\bar{z}_1) d_{11}}{d_{22}}}\\ &···\\ &|(z_n-\bar{z}_n)| = \sqrt{\frac{\chi^2 -[(z_1-\bar{z}_1)^2 d_{11} + (z_2-\bar{z}_2)^2 d_{22}+···+(z_{n-1}-\bar{z}_{n-1})^2 d_{(n-1)(n-1)}]}{d_{nn}}} \end{aligned} \right.\tag{15} z1zˉ1=d11χ2 (z2zˉ2)=d22χ2(z1zˉ1)d11 ⋅⋅⋅(znzˉn)=dnnχ2[(z1zˉ1)2d11+(z2zˉ2)2d22+⋅⋅⋅+(zn1zˉn1)2d(n1)(n1)] (15)
因此可以确定 z \pmb{z} z的搜索空间:

{ z ˉ 1 − χ 2 d 11 ≤ z 1 ≤ z ˉ 1 + χ 2 d 11 z ˉ 2 − χ 2 − ( z 1 − z ˉ 1 ) d 11 d 22 ≤ z 2 ≤ z ˉ 2 + χ 2 − ( z 1 − z ˉ 1 ) d 11 d 22 ⋅ ⋅ ⋅ z ˉ n − χ 2 − [ ( z 1 − z ˉ 1 ) 2 d 11 + ( z 2 − z ˉ 2 ) 2 d 22 + ⋅ ⋅ ⋅ + ( z n − 1 − z ˉ n − 1 ) 2 d ( n − 1 ) ( n − 1 ) ] d n n ≤ z n ≤ z ˉ n + χ 2 − [ ( z 1 − z ˉ 1 ) 2 d 11 + ( z 2 − z ˉ 2 ) 2 d 22 + ⋅ ⋅ ⋅ + ( z n − 1 − z ˉ n − 1 ) 2 d ( n − 1 ) ( n − 1 ) ] d n n (16) \left\{ \begin{aligned} \bar{z}_1 - \sqrt{\frac{\chi^2}{d_{11}}} &\leq z_1 \leq \bar{z}_1 + \sqrt{\frac{\chi^2}{d_{11}}}\\ \bar{z}_2 - \sqrt{\frac{\chi^2 -(z_1-\bar{z}_1) d_{11}}{d_{22}}} &\leq z_2 \leq \bar{z}_2 + \sqrt{\frac{\chi^2 -(z_1-\bar{z}_1) d_{11}}{d_{22}}}\\ &···\\ \bar{z}_n - \sqrt{\frac{\chi^2 -[(z_1-\bar{z}_1)^2 d_{11} + (z_2-\bar{z}_2)^2 d_{22}+···+(z_{n-1}-\bar{z}_{n-1})^2 d_{(n-1)(n-1)}]}{d_{nn}}} &\leq z_n \leq \bar{z}_n + \sqrt{\frac{\chi^2 -[(z_1-\bar{z}_1)^2 d_{11} + (z_2-\bar{z}_2)^2 d_{22}+···+(z_{n-1}-\bar{z}_{n-1})^2 d_{(n-1)(n-1)}]}{d_{nn}}} \end{aligned} \right. \tag{16} zˉ1d11χ2 zˉ2d22χ2(z1zˉ1)d11 zˉndnnχ2[(z1zˉ1)2d11+(z2zˉ2)2d22+⋅⋅⋅+(zn1zˉn1)2d(n1)(n1)] z1zˉ1+d11χ2 z2zˉ2+d22χ2(z1zˉ1)d11 ⋅⋅⋅znzˉn+dnnχ2[(z1zˉ1)2d11+(z2zˉ2)2d22+⋅⋅⋅+(zn1zˉn1)2d(n1)(n1)] (16)

5、恢复模糊度

通过(16)依次搜索的到最优的变换后的模糊度 z \pmb{z} z后,根据(2)可得到变换前的模糊度参数 a \pmb{a} a的固定解:

a = Z − T z (17) \pmb{a} = Z^{-T}\pmb{z}\tag{17} a=ZTz(17)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值