一、通用大模型(General Large Models, GLMs)
定义与特点
通用大模型是一种具备广泛任务适应能力的模型,通常通过大规模预训练和微调实现多任务处理。其核心特点包括:
-
大规模参数:
参数量从数十亿到数万亿,通过海量数据训练获得强大的泛化能力。
-
多模态支持:
部分通用大模型可处理文本、图像、音频等多种数据形式(如GPT-4o)。
-
预训练-微调范式:
先在大规模未标注数据上预训练,再通过微调适配特定任务。
与其他模型的关系
通用大模型是生成大模型和推理大模型的基础框架。例如,GPT系列既是通用大模型,也可通过调整训练目标或架构侧重生成或推理能力。
二、生成大模型(Generative Models)
定义与特点
生成大模型专注于学习数据的联合概率分布,能够生成新样本。其典型应用包括文本生成、图像创作等。代表模型如GPT系列、GAN、VAE等。
-
核心机制:
通过联合概率分布生成新数据,而非直接分类或预测(如ChatGPT的文本生成)。
-
应用场景:
数据增强、内容创作、对话系统等。
与通用大模型的交叉
多数生成大模型属于通用大模型的子集。例如,ChatGPT作为通用大模型,其生成能力是其核心功能之一;但某些专用生成模型(如GAN)可能不强调多任务通用性。
💡 关键点:生成大模型通过学习数据分布,能够创造出全新的内容,是内容创作领域的核心技术。
三、推理大模型(Reasoning Models)
定义与特点
推理大模型侧重逻辑推理和复杂问题解决能力,强调在数学、排序、决策等任务中的准确性和效率。例如,DeepSeek R1、Grok3等模型在逻辑测试中表现突出。
-
技术优化:
通过指令微调、增强训练数据(如混合思维链技术)提升推理能力。
-
应用场景:
数学解题、代码生成、工业决策支持等。
与通用大模型的交叉
推理能力是通用大模型的重要分支。例如,GPT-4通过改进架构在多步推理任务中表现更优,而专用推理模型(如HiGPT)则通过异质图指令微调强化特定领域的推理能力。
四、三者的核心关系
功能层级
通用大模型是基础框架,兼具生成与推理潜力。生成大模型和推理大模型是通用大模型在不同功能方向上的优化分支。例如,ChatGPT既可用于生成文本,也可通过微调增强推理能力。
技术路径差异
生成大模型依赖联合概率分布生成新数据,需大量语料训练(如文心一言的中文生成)。推理大模型需结合逻辑规则或知识图谱(如HiGPT的异质图结构建模),并通过数据增强解决稀疏性问题。
应用场景互补
生成大模型适用于内容创作、对话交互等场景。推理大模型适用于决策支持、复杂计算等场景。通用大模型通过多模态和微调实现两者融合(如GPT-4o的多模态生成与推理)。
五、未来发展趋势
-
融合化:
通用大模型将整合生成与推理能力,例如通过多模态输入增强复杂问题解决能力。
-
垂直化:
行业大模型(如焱宇)通过领域知识库优化生成和推理精度,解决通用模型的“幻觉”问题。
-
效率优化:
推理成本降低(如第四范式的SageOne IA一体机)和模型压缩技术将推动三者的大规模落地。
总结
通用大模型是人工智能的“全能平台”,生成和推理大模型则是其在不同任务中的专业化延伸。未来,三者将进一步融合,并通过垂直领域优化、算力提升等技术突破,推动AI向更高效、更智能的方向发展。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!