在之前,我们介绍了两种可解释性神经网络:
这里我们再介绍另一种网络结构:GAMI-Net
,对应的文章为
- GAMI-Net: An Explainable Neural Network based on Generalized Additive Models with Structured Interactions
- Accurate Intelligible Models with Pairwise Interactions
前文回顾
前面两篇文章,做可解释性神经网络用的都是GAIM,但由于模型的复杂性依旧相对较高, h i ( w i T x ) h_i \left(\boldsymbol{w}_{i}^{T} \boldsymbol{x}\right) hi(wiTx)中的 w i T x \boldsymbol{w}_{i}^{T} \boldsymbol{x} wiTx的可解释性依旧比较弱,因此后面模型考虑使用GAM模型。
GAIM:
g ( E ( y ∣ x ) ) = μ + ∑ i = 1 M h i ( w i T x ) g(\mathbb{E}(y \mid \boldsymbol{x}))=\mu+\sum_{i=1}^{M} h_{i}\left(\boldsymbol{w}_{i}^{T} \boldsymbol{x}\right) g(E(y∣x))=μ+i=1∑Mhi(wiTx)
GAM:
g ( E ( y ∣ x ) ) = μ + ∑ h i ( x i ) g(\mathbb{E}(y \mid \boldsymbol{x}))=\mu+\sum h_{i}\left(x_{i}\right) g(E(y∣x))=μ+∑