可解释性神经网络——3.一种新的可解释性神经网络GAMI-Net

在之前,我们介绍了两种可解释性神经网络:

这里我们再介绍另一种网络结构:GAMI-Net,对应的文章为

  • GAMI-Net: An Explainable Neural Network based on Generalized Additive Models with Structured Interactions
  • Accurate Intelligible Models with Pairwise Interactions

前文回顾

前面两篇文章,做可解释性神经网络用的都是GAIM,但由于模型的复杂性依旧相对较高, h i ( w i T x ) h_i \left(\boldsymbol{w}_{i}^{T} \boldsymbol{x}\right) hi(wiTx)中的 w i T x \boldsymbol{w}_{i}^{T} \boldsymbol{x} wiTx的可解释性依旧比较弱,因此后面模型考虑使用GAM模型。
GAIM
g ( E ( y ∣ x ) ) = μ + ∑ i = 1 M h i ( w i T x ) g(\mathbb{E}(y \mid \boldsymbol{x}))=\mu+\sum_{i=1}^{M} h_{i}\left(\boldsymbol{w}_{i}^{T} \boldsymbol{x}\right) g(E(yx))=μ+i=1Mhi(wiTx)

GAM
g ( E ( y ∣ x ) ) = μ + ∑ h i ( x i ) g(\mathbb{E}(y \mid \boldsymbol{x}))=\mu+\sum h_{i}\left(x_{i}\right) g(E(yx))=μ+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值