了解性阅读深度图超分辨率(DSR)领域的文章。发现该领域基于深度学习的进展比较慢。文中的通道注意力明显就是Non-Local注意力。此外,发现这是第二篇利用输入损失来约束重建结果的文章了,而且都是在SR领域,都发表在CVPR2020上。
Abstract:
尽管在基于深度学习的深度图超分辨率(DSR)方面取得了显著进步,但是如何解决低分辨率(LR)深度图在现实世界中的退化仍然是一个重大挑战。现有的DSR模型通常在合成数据集上进行训练和测试,这与从真实深度传感器获得的数据有很大不同。在本文中,我们认为在这种情况下训练的DSR模型是局限性的,不能有效地处理实际的DSR任务。我们为解决不同深度传感器