CVPR2020-深度图超分辨率DSR新方法| Channel Attention based Iterative Residual Learning for Depth Map SR

了解性阅读深度图超分辨率(DSR)领域的文章。发现该领域基于深度学习的进展比较慢。文中的通道注意力明显就是Non-Local注意力。此外,发现这是第二篇利用输入损失来约束重建结果的文章了,而且都是在SR领域,都发表在CVPR2020上。

论文地址:http://openaccess.thecvf.com/content_CVPR_2020/papers/Song_Channel_Attention_Based_Iterative_Residual_Learning_for_Depth_Map_Super-Resolution_CVPR_2020_paper.pdf

在这里插入图片描述

Abstract:

尽管在基于深度学习的深度图超分辨率(DSR)方面取得了显著进步,但是如何解决低分辨率(LR)深度图在现实世界中的退化仍然是一个重大挑战。现有的DSR模型通常在合成数据集上进行训练和测试,这与从真实深度传感器获得的数据有很大不同。在本文中,我们认为在这种情况下训练的DSR模型是局限性的,不能有效地处理实际的DSR任务。我们为解决不同深度传感器

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值