Qwen模型LoRA微调后的两种启动方式

本文记录了在使用LoRA微调后的Qwen模型时的两种启动方式,一种是原始模型+LoRA模型,一种是将两个模型合并保存后再调用的方式。

LoRA模型的启动方式

LoRA模型可以通过peft包中的AutoPeftModelForCausalLM进行加载:

from peft import AutoPeftModelForCausalLM

# 设置LoRA微调后的模型存储路径(checkpoint)
model = AutoPeftModelForCausalLM.from_pretrained("/home/<用户名>/nlp/Qwen/finetune/output_qwen_medical/checkpoint-1000/", device_map='auto',trust_remote_code=True).eval()

LoRA模型加载完毕还是需要transformers里面的AutoTokenizer:

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("/home/<用户名>/nlp/Qwen/model/qwen/Qwen-1_8B-Chat", trust_remote_code=True)

然后再调model的chat方法即可:

# 第一轮对话
response, history = model.chat(tokenizer, "....", history =None)
print(response)

以合并LoRA模型与原始模型的参数方式加载

保存模型参数:

# 可以将LoRA参数与原始参数
### 使用LoRA技术对Qwen 2.5模型进行微调 对于希望利用低秩适应(Low-Rank Adaptation, LoRA)方法来优化Qwen 2.5模型训练过程的情况,可以采取如下方式实现高效而节省资源的微调操作[^1]。 #### 准备工作环境 确保安装了必要的依赖库以及配置好了适合于运行深度学习任务的工作站或云端实例。考虑到Qwen系列是由阿里云开发的语言模型,在准备阶段可能还需要获取相应的API访问权限或是下载预训练权重文件。 #### 加载基础模型与设置超参数 加载未经修改的基础版Qwen 2.5作为起点,并定义用于指导后续调整工作的几个重要变量——比如LoRA中的`r`(即矩阵分解后的维度大小)和`lora_alpha`等控制因子。这些数值的选择会直接影响到最终输出的质量及性能表现,所以建议依据具体应用场景和个人偏好做出适当设定。 ```python from transformers import AutoModelForCausalLM, LoraConfig model_name_or_path = "Qwen/Qwen-7B" peft_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], bias="none", ) base_model = AutoModelForCausalLM.from_pretrained(model_name_or_path) ``` #### 数据集处理 针对特定领域定制化需求收集并整理好高质量标注样本集合;这里提到的例子是以法律咨询类问答为例进行了针对性增强[^2]。注意要遵循数据清洗、分词编码等一系列标准流程使原始文本适配输入格式要求。 #### 构建训练循环 编写脚本完成整个迭代更新周期内的各项事务安排,像批次划分、梯度累积策略制定直至损失函数计算都属于此环节内不可或缺的部分。期间务必密切监控GPU内存消耗状况以免超出硬件承载极限引发异常中断现象发生[^3]。 ```bash # 假设使用的是PyTorch Lightning框架下的Trainer对象来进行分布式加速运算 trainer.fit(model=model, dataloaders=train_dataloader) ``` #### 调整评估指标体系 最后一步则是确立一套科学合理的评测准则用来衡量经过改造之后的新版本相较于原生形态究竟取得了哪些进步之处。这不仅有助于直观反映改进成果更有利于持续跟踪观察长期发展趋势走向何方。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值